
	

https://dozikiji.maxudijuz.com/344109561782439960236011817709249712142853?penanifasokupovabibajodo=zagenozuxifizugoropomifipiluxivedelevejajaguwepijobedubediboximujefobuvipopokedisutixuvufetolazulodoxibabowitalepetabodosedibigemuvesatodatatetigubiwatexodajebisomevebovefidopusiruxubiwaximulijawatejax&utm_term=what+is+discrete+fourier+series&valorajebodiwenerujepovibotagewaruxateboragij=zunikusapekakakunotoxomusidururuwivapizabozanugidupikutivasapixirideririvulilejezofebutogijilajodoro

Share	—	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	—	remix,	transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	—	You	must	give	appropriate	credit	,	provide	a	link	to	the
license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	—	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	—	You	may	not	apply
legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions
necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	In	digital	signal	processing,	a	discrete	Fourier	series	(DFS)	is	a	Fourier	series	whose	sinusoidal	components	are	functions	of	a	discrete	variable	instead	of	a	continuous	variable.	The	result	of	the	series	is	also	a
function	of	the	discrete	variable,	i.e.	a	discrete	sequence.	A	Fourier	series,	by	nature,	has	a	discrete	set	of	components	with	a	discrete	set	of	coefficients,	also	a	discrete	sequence.	So	a	DFS	is	a	representation	of	one	sequence	in	terms	of	another	sequence.	Well	known	examples	are	the	Discrete	Fourier	transform	and	its	inverse	transform.[1]: ch	8.1 
The	exponential	form	of	Fourier	series	is	given	by:	s	(t)	=	∑	k	=	−	∞	∞	S	[k]	⋅	e	i	2	π	k	P	t	,	{\displaystyle	s(t)=\sum	_{k=-\infty	}^{\infty	}S[k]\cdot	e^{i2\pi	{\frac	{k}{P}}t},}	which	is	periodic	with	an	arbitrary	period	denoted	by	P	.	{\displaystyle	P.}	When	continuous	time	t	{\displaystyle	t}	is	replaced	by	discrete	time	n	T	,	{\displaystyle	nT,}	for
integer	values	of	n	{\displaystyle	n}	and	time	interval	T	,	{\displaystyle	T,}	the	series	becomes:	s	(n	T)	=	∑	k	=	−	∞	∞	S	[k]	⋅	e	i	2	π	k	P	n	T	,	n	∈	Z	.	{\displaystyle	s(nT)=\sum	_{k=-\infty	}^{\infty	}S[k]\cdot	e^{i2\pi	{\frac	{k}{P}}nT},\quad	n\in	\mathbb	{Z}	.}	With	n	{\displaystyle	n}	constrained	to	integer	values,	we	normally	constrain	the	ratio	P
/	T	=	N	{\displaystyle	P/T=N}	to	an	integer	value,	resulting	in	an	N	{\displaystyle	N}	-periodic	function:	Discrete	Fourier	series	s	N	[n]	≜	s	(n	T)	=	∑	k	=	−	∞	∞	S	[k]	⋅	e	i	2	π	k	N	n	{\displaystyle	s_{_{N}}[n]\triangleq	s(nT)=\sum	_{k=-\infty	}^{\infty	}S[k]\cdot	e^{i2\pi	{\frac	{k}{N}}n}}	which	are	harmonics	of	a	fundamental	digital	frequency	1
/	N	.	{\displaystyle	1/N.}	The	N	{\displaystyle	N}	subscript	reminds	us	of	its	periodicity.	And	we	note	that	some	authors	will	refer	to	just	the	S	[k]	{\displaystyle	S[k]}	coefficients	themselves	as	a	discrete	Fourier	series.[2]: p.85	(eq	15a) 	Due	to	the	N	{\displaystyle	N}	-periodicity	of	the	e	i	2	π	k	N	n	{\displaystyle	e^{i2\pi	{\tfrac	{k}{N}}n}}	kernel,
the	infinite	summation	can	be	"folded"	as	follows:	s	N	[n]	=	∑	m	=	−	∞	∞	(∑	k	=	0	N	−	1	e	i	2	π	k	−	m	N	N	n			S	[k	−	m	N])	=	∑	k	=	0	N	−	1	e	i	2	π	k	N	n	(∑	m	=	−	∞	∞	S	[k	−	m	N])	⏟	≜	S	N	[k]	,	{\displaystyle	{\begin{aligned}s_{_{N}}[n]&=\sum	_{m=-\infty	}^{\infty	}\left(\sum	_{k=0}^{N-1}e^{i2\pi	{\tfrac	{k-mN}{N}}n}\	S[k-
mN]\right)\\&=\sum	_{k=0}^{N-1}e^{i2\pi	{\tfrac	{k}{N}}n}\underbrace	{\left(\sum	_{m=-\infty	}^{\infty	}S[k-mN]\right)}	_{\triangleq	S_{N}[k]},\end{aligned}}}	which	is	the	inverse	DFT	of	one	cycle	of	the	periodic	summation,	S	N	.	{\displaystyle	S_{N}.}	[1]: p.542	(eq	8.4) 	[3]: p.77	(eq	4.24) 	^	a	b	Oppenheim,	Alan	V.;	Schafer,	Ronald	W.;
Buck,	John	R.	(1999).	Discrete-time	signal	processing	(2nd	ed.).	Upper	Saddle	River,	N.J.:	Prentice	Hall.	ISBN	0-13-754920-2.	samples	of	the	Fourier	transform	of	an	aperiodic	sequence	x[n]	can	be	thought	of	as	DFS	coefficients	of	a	periodic	sequence	obtained	through	summing	periodic	replicas	of	x[n].	...	The	Fourier	series	coefficients	can	be
interpreted	as	a	sequence	of	finite	length	for	k=0,...,(N-1),	and	zero	otherwise,	or	as	a	periodic	sequence	defined	for	all	k.	^	Nuttall,	Albert	H.	(Feb	1981).	"Some	Windows	with	Very	Good	Sidelobe	Behavior".	IEEE	Transactions	on	Acoustics,	Speech,	and	Signal	Processing.	29	(1):	84–91.	doi:10.1109/TASSP.1981.1163506.	^	Prandoni,	Paolo;	Vetterli,
Martin	(2008).	Signal	Processing	for	Communications	(PDF)	(1	ed.).	Boca	Raton,FL:	CRC	Press.	pp.	72,	76.	ISBN	978-1-4200-7046-0.	Retrieved	4	October	2020.	the	DFS	coefficients	for	the	periodized	signal	are	a	discrete	set	of	values	for	its	DTFT	Retrieved	from	"	Signal	Processing	\(ewcommand{\sumN}[1]{\sum_{#1\in\langle	N\rangle}}\)	As
computer	scientists	we	most	often	work	with	digital	signals,	i.e.	DT	signals.	For	infinite	length	(non	periodic)	signals	the	DT	Fourier	transform	from	the	previous	chapter	is	more	of	a	theoretical	tool	to	analyze	DT	signals	and	DT	filters.	Actually	calculating	the	DT	Fourier	transform	for	a	signal	in	practice	is	impossible	as	an	infinite	length	signal	cannot
be	stored	in	computer	memory.	let	alone	be	processed	in	its	entirety	to	calculate	its	Fourier	transform.	In	practice	only	a	small	part	of	a	discrete	signal	is	used	to	analyze	its	frequency	components.	That	is	where	the	discrete	time	Fourier	series	comes	in.	We	start	with	a	signal	\(x[n]\)	that	is	only	defined	from	\(n=0\)	to	\(n=N-1\).	This	signal	can	be
seen	as	one	period	of	an	infinite	length	signal	with	period	\(N\)	making	the	DTFS	the	discrete	analog	of	the	CT	Fourier	series.	The	convolution	kernels	\(h[n]\)	that	are	used	are	often	defined	analytically	(i.e.	we	have	a	formula	for	it)	and	in	many	cases	we	are	capable	to	calculate	its	discrete	time	Fourier	transform.	But	for	observed	signals,	that	are
defined	on	the	infinite	time	axis,	calculation	of	the	Fourier	transform	is	not	feasible.	The	DTFS	is	the	transform	for	frequency	analysis	to	be	used	in	practice.	It	is	also	known	as	the	DFT	(Discrete	Fourier	Transform	not	to	be	confused	with	the	Discrete	Time	Fourier	Transform)	and	an	efficient	algorithm	for	the	DFT	is	the	FFT	(Fast	Fourier	Transform).
Unfortunately	the	choice	for	the	normalization	constants	(in	both	the	Fourier	transform	and	its	inverse)	may	differ.	When	reading	articles	or	when	using	software	implementing	Fourier	transforms	it	is	always	wise	to	look	up	the	definitions	that	are	being	used.	We	now	have	a	DT	signal	that	is	periodic	with	period	\(N\),	i.e.	\(x[n+N]=x[n]\).	In	practice
given	only	\(N\)	samples	of	a	DT	signal	we	just	assume	what	we	know	is	one	period	of	a	periodic	signal.	The	synthesis	equation	is:	\[x[n]	=	\sum_{k=0}^{N-1}	a_k	e^{jk\frac{2\pi}{N}n}\]	where	\[\Omega_0	=	\frac{2\pi}{N}\]	is	the	fundamental	frequency	of	the	signal	\(x[n]\)	(of	length	\(N\)).	Below	we	sketch	a	DT	periodic	signal	with	\(N=8\).	The	8
basis	signals	are	the	complex	exponentials:	\[\phi_k[n]	=	e^{jk\frac{2\pi}{N}n}	=	e^{jk\Omega_0n}\]	Show	code	for	figure	1import	numpy	as	np	2import	matplotlib.pyplot	as	plt	3	4def	phi(n,	k):	5	N	=	len(n)	6	Omega_0	=	2*np.pi	/	N	7	return	np.exp(1j*k*Omega_0*n)	8	9N	=	8	10n	=	np.arange(N)	11fig,	axs	=	plt.subplots(nrows=N,	figsize=(6,10),
sharex=True)	12fig.tight_layout()	13	14for	k	in	range(N):	15	axs[k].stem(n,	phi(n,	k).real,	use_line_collection=True)	16	axs[k].set_ylim(-1.5,1.5)	17	axs[k].set_xlim(-3,N)	18	axs[k].text(-2,0,'k	=	%d'	%	k)	#	why	don't	i	see	them...???	19	axs[k].axis('off')	20	21plt.savefig('source/figures/discrete_harmonics.png')	Fig.	3.9	Discrete	Harmonics.	Shown	are	the
real	parts	of	the	complex	exponentials	\(\phi_k[n]	=	e^{jk\Omega_0n}\)	for	\(k=0,\ldots,7\).¶	Observe	that	for	\(k=0,1,2,3,4\)	the	frequency	is	increasing	from	zero	to	the	maximal	frequency	exponential	\(e^{j\pi	n}\)	where	the	value	\(x[n]\)	jumps	from	+1	to	-1	and	back	for	every	\(n\).	The	analysis	equation	in	this	case	is:	\[a_k	=	\frac{1}{N}
\sum_{n=0}^{N-1}	x[n]	e^{-j	k	\frac{2\pi}{N}	n}\]	For	the	discrete	time	Fourier	series	it	is	not	too	hard	to	derive	the	analysis	equation	given	the	synthesis	equation.	Let’s	start	with	the	synthesis	equation	and	multiply	each	side	with	a	complex	exponential	function	\[x[n]	e^{-j	k'	\frac{2\pi}{N}	n}	=	\sum_{k=0}^{N-1}	a_k	e^{jk\frac{2\pi}{N}n}
e^{-j	k'	\frac{2\pi}{N}	n}\]	Now	we	take	the	sum	over	all	\(n\)	on	both	sides:	\[\begin{split}\sum_{n=0}^{N-1}	x[n]	e^{-j	k'	\frac{2\pi}{N}	n}	&=	\sum_{n=0}^{N-1}	\sum_{k=0}^{N-1}	a_k	e^{jk\frac{2\pi}{N}n}	e^{-j	k'	\frac{2\pi}{N}	n}\\	&=	\sum_{k=0}^{N-1}	a_k	\sum_{n=0}^{N-1}	e^{j(k-k')\frac{2\pi}{N}n}	\\	&=	\sum_{k=0}^{N-1}
a_k	N	\delta[k-k']\\	&=	N	a_{k'}\end{split}\]	and	thus:	\[a_{k'}	=	\frac{1}{N}	\sum_{n=0}^{N-1}	x[n]	e^{-j	k'	\frac{2\pi}{N}	n}\]	In	this	derivation	we	have	used:	\[\sum_{n=0}^{N-1}	e^{j	m	\frac{2\pi}{N}	n}	=	N\delta[m]\]	Convince	yourself	that	this	is	true	(easily	done	by	plotting	the	real	and	imaginary	parts	of	the	complex	exponential
function.	Time	Domain	Frequency	Domain	Synthesis	(Inverse	Fourier	Transform)	\[x[n]	=	\sumN{k}	a_k	e^{jk	\frac{2\pi}{N}n}\]	Analysis	(Fourier	Transform)	\[a_k	=	\frac{1}{N}	\sumN{n}	x[n]	e^{-j	k	\frac{2\pi}{N}	n}\]	Real	Signals	Symmetry	in	Fourier	transform	Even	Signals	Real	Fourier	transform	Odd	Signals	Imaginary	Fourier	transform	\
[a_k	\text{	is	imaginary}\]	Difference	\[(1-e^{-j	\frac{2\pi}{N}	k})a_k\]	Time	Shift	Phase	factor	\[e^{-j	k	\frac{1\pi}{N}	n_0}	a_k\]	Convolution	\[x[n]	\ast_N	y[n]	=	\sumN{k}	x[k]	y[n-k]\]	Multiplication	Multiplication	Convolution	Real	SignalsLet	\(x[n]\)	be	a	real	valued	signal.	The	analysis	equation	for	\(a_{-k}\)	is:	\[a_{-k}	=	\frac{1}{N}
\sum_{n=0}^{N-1}	x[n]	e^{jk\frac{2\pi}{N}	n}\]	and	because	\(x[n]\)	is	real	we	have	that	\[a_{-k}^\ast	=	\frac{1}{N}	\sum_{n=0}^{N-1}	x[n]	e^{-jk\frac{2\pi}{N}	n}	=	a_k\]	SymmetryNote	that	the	complex	exponentials	\(e^{j	k	\frac{2\pi}{N}	n\)	are	periodic	with	period	\(N\)	for	all	\(k\)	but	then	a	summation	of	these	exponentials	is	periodic	as
well	and	thus	or	\[a_{N-k}	=	a_{-k}	=	a_k^\star\]	For	even	\(N\)	we	have	\[\begin{split}a_0	&	\mbox{	is	real}\\	a_1	&=	a_{N-1}^\star\\	a_2	&=	a_{N-2}^\star\\	\vdots\\	a_{N/2}	&	\mbox{	is	real}\\	\vdots\\	a_{N-2}	&=	a_2^\star\\	a_{N-1}	&=	a_1^\star\end{split}\]	Synthesis	of	Real	Valued	FunctionThe	synthesis	equation	for	\(N\)	even	is	\
[\begin{split}x[n]	&=	\sum_{k=0}^{N-1}	a_k	e^{j	k	\frac{2\pi}{N}	n}\\	&=	a_0	+	\sum_{k=1}^{N/2-1}	a_k	e^{j	k	\frac{2\pi}{N}	n}	+	a_{N/2}	e^{j\pi	n}	+	\sum_{k=N/2+1}^{N-1}	a_k	e^{j	k	\frac{2\pi}{N}	n}\\	&=	a_0	+	\sum_{k=1}^{N/2-1}	a_k	e^{j	k	\frac{2\pi}{N}	n}	+	a_{N/2}	e^{j\pi	n}	+	\sum_{k=1}^{N/2-1}	a_{N-k}	e^{j	(N-k)
\frac{2\pi}{N}	n}\\	&=	a_0	+	\sum_{k=1}^{N/2-1}\left(a_k	e^{j	k	\frac{2\pi}{N}	n}	+	a_{N-k}	e^{j	(N-k)	\frac{2\pi}{N}	n}\right)	+	a_{N/2}	e^{j\pi	n}\\	&=	a_0	+	\sum_{k=1}^{N/2-1}\left(a_k	e^{j	k	\frac{2\pi}{N}	n}	+	a_{k}^\star	e^{-j	k	\frac{2\pi}{N}	n}\right)	+	a_{N/2}	e^{j\pi	n}\end{split}\]	We	now	write	\[a_k	=	|a_k|	e^{j\angle	a_k}
\text{	and	thus	}	a_k^\star	=	|a_k|	e^{-j\angle	a_k}\]	Leading	to	\[\begin{split}x[n]	&=	a_0	+	\sum_{k=1}^{N/2-1}|a_k|\left(e^{j	(k	\frac{2\pi}{N}	n	+	\angle	a_k)}	+	e^{-j	(k	\frac{2\pi}{N}	n	+	\angle	a_k)}	\right)	+	a_{N/2}	e^{j\pi	n}\\	&=	a_0	+	2	\sum_{k=1}^{N/2-1}|a_k|	\cos\left(k	\frac{2\pi}{N}	n	+	\angle	a_k\right)	+	a_{N/2}	\cos(\pi
n)\end{split}\]	Both	time	and	frequency	are	discrete	for	the	DT	Fourier	Series.	Consider	the	\(k\)-th	frequency	component	corresponding	with	complex	exponential	\[\phi_k[n]	=	e^{j	k	\frac{2\pi}{N}	n}\]	The	radial	frequency	of	this	signal	is	\[\Omega	=	k\frac{2\pi}{N}\]	We	assume	\(N\)	is	even	and	thus	for	\(k=N/2\)	we	have:	\[k=N/2:	\quad	\Omega
=	\pi\]	corresponding	with	maximal	radial	frequency	that	can	be	represented	with	the	given	sampling.	Like	in	a	previous	section	we	can	link	the	radial	frequency	with	the	time	domain	radial	frequency	\(\w\)	and	frequency	\(f\):	\[\w	=	\frac{\Omega}{T_s},	\quad	f	=	\frac{\Omega}{2\pi	T_s}	=	\frac{k}{NT_s}\]	where	\(T_s\)	is	the	sample	time.	The
relation	between	\(n\)	and	time	is	simply	given	as	\(t=nT_s\).	Below	a	plot	of	the	DT	function	\[x[n]	=	5\sin(2\pi	n	/	N)	+	\sin(14\pi	n	/	N),	\quad	n=0,1,\ldots,63\]	and	its	DT	Fourier	Transform.	Please	make	sure	you	understand	the	plot.	You	should	also	be	able	to	plot	time	on	the	horizontal	axis	in	the	first	plot	and	frequency	(in	Hz)	in	the	second	plot.
Show	code	for	figure1plt.clf()	2	3from	DTP	import	example_timefreq	4	5example_timefreq()	6plt.savefig('source/figures/example_timefreq.png')	Fig.	3.10	The	function	\(x[n]\)	and	its	discrete	Fourier	series.¶	Any	signal	in	practice	is	a	discrete	time	signal	but	furthermore	it	is	a	signal	for	a	finite	number	of	samples.	No	wonder	that	the	computational
way	to	do	frequency	analysis	is	by	using	the	DT	Fourier	Series.	Unfortunately	to	add	to	the	confusion	the	DTFS	is	known	as	the	Discrete	Fourier	Transform	(DFT)	and	the	fast	algorithm	to	calculate	the	DFT	is	called	the	FFT	(Fast	Fourier	Transform).	And	even	more,	the	normalization	factors	are	chosen	differently	than	what	we	used	in	this	section.	In
numpy.fft	we	find	that	the	analysis	equation	(in	the	default	setting)	is:	\[A_k	=	\sum_{m=0}^{n-1}	a_m	e^{-2\pi	j	\frac{mk}{n}}\]	Note	the	change	of	notation.	The	\(A_k\)’s	are	the	Fourier	coefficients	whereas	the	\(a_k\)’s	are	the	samples	of	the	signal.	Also	note	that	there	is	no	scaling	factor	in	the	analysis	equation	and	the	\(n\)	is	the	number	of
samples	both	in	time	as	well	as	frequency	domain.	The	synthesis	equation	is	the	inverse	DFT:	\[a_m	=	\frac{1}{n}	\sum_{k=0}^{n-1}	A_k	e^{2\pi	j	\frac{mk}{n}}\]	Again	carefully	note	the	differences	with	the	DT	Fourier	Series.	In	the	default	setting	of	the	FFT	in	numpy	(i.e.	parameter	norm	=	‘backward’)	the	scaling	factors	are	opposite	of	what	we
have	used	in	this	chapter	(i.e.	we	have	used	factor	\(1/N\)	in	the	analysis	equation	and	factor	\(1\)	in	the	synthesis	equation).	As	an	example	let	us	start	with	a	simple	block	function	Fig.	3.11	Block	function	and	its	discrete	Fourier	series.¶	The	python	code	is	given	below.	def	example_DFT_block():	N	=	32	n	=	np.arange(32)	x	=	np.zeros_like(n)	x[:4]	=	1
x[-3:]	=	1	fig,	axs	=	plt.subplots(3)	axs[0].stem(n,	x)	a	=	fft(x)/N	axs[1].stem(n,	a.real)	axs[2].stem(n-N//2,	np.fft.fftshift(a).real)	print(n-N//2)	Todo	Code	in	rst	file	zetten!	Maak	de	import	van	fft	zichtbaar	Look	again	at	the	analysis	equation.	It	takes	\(N\)	numbers	\(x[0],\ldots,x[N-1]\)	and	produces	\(N\)	complex	numbers	\(a_0,\ldots,a_{N-1}\).	And	it
does	so	in	a	linear	fashion	meaning	that	it	can	be	represented	as	a	matrix	operation.	Let	\[\begin{split}\v	x	&=	\begin{pmatrix}x[0]	&	x[1]	&	\cdots	&	x[N-1]\end{pmatrix}\T\\	\v	a	&=	\begin{pmatrix}a_0	&	a_1	&	\cdots	&	a_{N-1}\end{pmatrix}\T\\	W_N	&=	e^{-j	\frac{2\pi}{N}}\\	F_{kn}	&=	e^{-j	k	\frac{2\pi}{N}	n}	=	W_N^{kn}\end{split}\]
then:	\[\v	a	=	\frac{1}{N}	F_N	\v	x\]	The	matrix	\(F_N\)	is	called	the	Fourier	matrix.	First	we	start	with	a	simple	straightforward	implementation	of	the	DFT:	\[A_k	=	\sum_{m=0}^{N-1}	a_m	e^{-2\pi	j	\frac{mk}{N}}\]	Given	the	signal	\(a_m\)	(we	will	follow	the	numpy	fft	documentation	here)	as	the	vector	\(\v	a\)	we	may	calculate	the	DFT
coefficients	\(A_k\)	(in	vector	\(\v	A\))	as:	where	\(F\)	is	the	Fourier	matrix	with	elements	\(F_{kn}=W_N^{kn}\).	In	Python/Numpy	the	DFT	is	easy	to	implement:	def	DFT(a):	"""Calculate	the	DFT	of	signal	`a`"""	N	=	len(a)	n	=	arange(N)	W	=	exp(-1j*2*pi/N)	F	=	W**outer(n,n)	return	F	@	a	This	is	indeed	what	the	fft	from	numpy	calculates	as	well:
1from	DFT_FFT	import	DFT	2from	numpy.fft	import	fft	3	4a	=	np.random.random(512)	5A1	=	DFT(a)	6A2	=	fft(a)	7print(np.allclose(A1,A2))	To	come	up	with	a	faster	algorithm	for	the	DFT	we	rewrite	the	analysis	equation.	We	assume	that	\(N\)	is	some	power	of	\(2\).	First	we	split	the	sum	over	the	inputs	into	the	even	and	odd	elements:	\
[\begin{split}A_k	&=	\sum_{m=0}^{N-1}	a_m	e^{-2\pi	j	\frac{mk}{N}}\\	&=	\sum_{m=0}^{N/2-1}	a_{2m}	e^{-2\pi	j	\frac{2mk}{N}}	+	\sum_{m=0}^{N/2-1}	a_{2m+1}	e^{-2\pi	j	\frac{(2m+1)k}{N}}\\	&=	\sum_{m=0}^{N/2-1}	a_{2m}	e^{-2\pi	j	\frac{mk}{N/2}}	+	e^{-2\pi	j	k/N}	\sum_{m=0}^{N/2-1}	a_{2m+1}	e^{-2\pi	j\frac{mk}
{N/2}}\end{split}\]	Note	that	in	the	summations	over	\(m\)	runs	from	\(0\)	to	\(N/2\),	but	\(k\)	still	runs	from	\(0\)	to	\(N\).	But	also	note	that	the	exponential	\(e^{-2\pi	j	mk	/	(N/2)}\)	considered	as	function	of	\(k\)	is	periodic	with	period	\(N/2\).	So	altough	both	summations	in	the	last	equation	have	to	be	done	for	\(k=0,\ldots,N\)	we	only	have	to
calculate	the	vasummations	for	\(k=0,\ldots,N/2\)	and	repeat	these	values	for	larger	\(k\)’s.	Note	that	for	\(k=0,\ldots,N/2\)	the	the	\(N/2\)	values	of	the	first	summation	are	the	DFT	of	the	even	elements	of	the	input	signal	and	the	values	in	the	second	summation	are	the	DFT	of	the	odd	elements	of	the	input	signal.	Carefully	note	that	the	phase	factor	\
(e^{-2\pi	j	k/N}\)	must	be	calculated	for	\(k=0,\ldots,N\).	So	we	can	decompose	a	DFT	of	\(N\)	samples	into	two	DFT’s	of	each	\(N/2\)	samples.	But	of	course	a	DFT	of	N/2	samples	can	be	decomposed	into	two	DFT’s	of	\(N/5\)	samples.	This	leads	to	the	following	recursive	algorithm:	def	FFT(a):	"""	Calculate	the	DFT	using	the	FFT	(in	recursive	form)
Parameters	----------	a	:	numpy	array	(n,)	the	signal,	len(a)	should	be	power	of	2	"""	N	=	len(a)	if	N	%	2	>	0:	raise	ValueError("Size	of	a	must	be	a	power	of	2")	elif	N

