
	

https://tagopoxolu.nurepikis.com/974851561165285122766944393473239080568950?kiwawibovuxekajojurixadifawitedu=sozajamupifovigowarufabigonoxidelojamirofixonenesusinonigomawolawoxoxubumaxegisefadijapikulukojozajusesosejagasipisodipanifisadoxidugilumagijaxuxunojiruzekozexuvuragexujodokutipepatasibukiriwewuzarabap&utm_kwd=what+microcontroller+is+used+in+arduino+uno&kawupetifibaruxevijejamirotipasusedarasovo=vejukulowubutofododuzusofadutagikumagalikowuxisujetajarogelosilukafuroboreropasitanalaxajemobavuwujetopedufuvijilagilumoxuxulosadizoz

Share	—	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	—	remix,	transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	—	You	must	give	appropriate	credit	,	provide	a	link	to	the
license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	—	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	—	You	may	not	apply
legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions
necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	Microcontroller	board	Arduino	UnoArduino	Uno	R3	SMD	board	with	ATmega328P	MCU	in	SMD	packageDeveloperarduino.ccManufacturerManyTypeSingle-board	microcontroller[1]AvailabilityUno	R4
webpageOperating	systemNone,	with	bootloader	(default),	FreeRTOSCPU	Atmel	AVR	(8-bit)	ARM	Cortex-M0+	(32-bit)	ARM	Cortex-M3	(32-bit)	Intel	Quark	(x86)	(32-bit)	MemorySRAMStorageFlash,	EEPROMWebsitearduino.cc	The	Arduino	Uno	is	a	series	of	open-source	microcontroller	board	based	on	a	diverse	range	of	microcontrollers	(MCU).	It
was	initially	developed	and	released	by	Arduino	company	in	2010.[2][3]	The	microcontroller	board	is	equipped	with	sets	of	digital	and	analog	input/output	(I/O)	pins	that	may	be	interfaced	to	various	expansion	boards	(shields)	and	other	circuits.[1]	The	board	has	14	digital	I/O	pins	(six	capable	of	PWM	output),	6	analog	I/O	pins,	and	is	programmable
with	the	Arduino	IDE	(Integrated	Development	Environment),	via	a	type	B	USB	cable.[4]	It	can	be	powered	by	a	USB	cable	or	a	barrel	connector	that	accepts	voltages	between	7	and	20	volts,	such	as	a	rectangular	9-volt	battery.	It	has	the	same	microcontroller	as	the	Arduino	Nano	board,	and	the	same	headers	as	the	Leonardo	board.[5][6]	The
hardware	reference	design	is	distributed	under	a	Creative	Commons	Attribution	Share-Alike	2.5	license	and	is	available	on	the	Arduino	website.	Layout	and	production	files	for	some	versions	of	the	hardware	are	also	available.	The	word	"uno"	means	"one"	in	Italian	and	was	chosen	to	mark	a	major	redesign	of	the	Arduino	hardware	and	software.[7]
The	Uno	board	was	the	successor	of	the	Duemilanove	release	and	was	the	9th	version	in	a	series	of	USB-based	Arduino	boards.[8]	Version	1.0	of	the	Arduino	IDE	for	the	Arduino	Uno	board	has	now	evolved	to	newer	releases.[4]	The	ATmega328	on	the	board	comes	preprogrammed	with	a	bootloader	that	allows	uploading	new	code	to	it	without	the	use
of	an	external	hardware	programmer.[3]	While	the	Uno	communicates	using	the	original	STK500	protocol,[1]	it	differs	from	all	preceding	boards	in	that	it	does	not	use	a	FTDI	USB-to-UART	serial	chip.	Instead,	it	uses	the	Atmega16U2	(Atmega8U2	up	to	version	R2)	programmed	as	a	USB-to-serial	converter.[9]	Arduino	RS232	Serial	board	-	a
predecessor	with	ATmega8	MCU	The	Arduino	project	started	at	the	Interaction	Design	Institute	Ivrea	(IDII)	in	Ivrea,	Italy.	At	that	time,	the	students	used	a	BASIC	Stamp	microcontroller,	at	a	cost	that	was	a	considerable	expense	for	many	students.	In	2003,	Hernando	Barragán	created	the	development	platform	Wiring	as	a	Master's	thesis	project	at
IDII,	under	the	supervision	of	Massimo	Banzi	and	Casey	Reas,	who	are	known	for	work	on	the	Processing	language.	The	project	goal	was	to	create	simple,	low-cost	tools	for	creating	digital	projects	by	non-engineers.	The	Wiring	platform	consisted	of	a	printed	circuit	board	(PCB)	with	an	ATmega168	microcontroller,	an	IDE	based	on	Processing,	and
library	functions	to	easily	program	the	microcontroller.[10]	In	2003,	Massimo	Banzi,	with	David	Mellis,	another	IDII	student,	and	David	Cuartielles,	added	support	for	the	cheaper	ATmega8	microcontroller	to	Wiring.	But	instead	of	continuing	the	work	on	Wiring,	they	forked	the	project	and	renamed	it	Arduino.	Early	Arduino	boards	used	the	FTDI
USB-to-UART	serial	chip	and	an	ATmega168.[10]	The	Uno	differed	from	all	preceding	boards	by	featuring	the	ATmega328P	microcontroller	and	an	ATmega16U2	(Atmega8U2	up	to	version	R2)	programmed	as	a	USB-to-serial	converter.	In	June	2023,	Arduino	released	two	new	flavors	of	the	Uno;	R4	Minima	and	R4	Wifi.	These	mark	a	departure	from
previous	boards	as	they	use	Renesas	RA4M1	ARM	Cortex	M4	microcontroller,	and	the	R4	Wifi	a	Espressif	ESP32-S3-MINI	co-processor.	These	versions	are	form	factor,	pin	and	power	compatible	with	version	R1	to	R3,	so	should	be	largely	be	able	to	be	drop	in	replacements.[11]	Arduino	Uno	R3	board	with	AVR-based	ATmega328P	MCU	in	DIP-28
package	Microcontroller	(MCU):[12]	IC:	Microchip	ATmega328P	(8-bit	AVR	core)	Clock	Speed:	16	MHz	on	Uno	board,	though	IC	is	capable	of	20	MHz	maximum	at	5	Volts	Flash	memory:	32	KB,	of	which	0.5	KB	used	by	the	bootloader	SRAM:	2	KB	EEPROM:	1	KB	USART	peripherals:	1	(Arduino	software	default	configures	USART	as	a	8N1	UART)	SPI
peripherals:	1	I²C	peripherals:	1	Operating	Voltage:	5	Volts	Digital	I/O	Pins:	14	PWM	Pins:	6	(Pin	#	3,	5,	6,	9,	10	and	11)[13]	Analog	Input	Pins:	6	DC	Current	per	I/O	Pin:	20	mA	DC	Current	for	3.3V	Pin:	50	mA	Size:	68.6	mm	x	53.4	mm	Weight:	25	g	ICSP	Header:	Yes	Power	Sources:	USB	connector.	USB	bus	specification	has	a	voltage	range	of	4.75	to
5.25	volts.	The	official	Uno	boards	have	a	USB-B	connector,	but	3rd	party	boards	may	have	a	miniUSB	/	microUSB	/	USB-C	connector.	5.5mm/2.1mm	barrel	jack	connector.	Official	Uno	boards	support	6	to	20	volts,	though	7	to	12	volts	is	recommended.	The	maximum	voltage	for	3rd	party	Uno	boards	varies	between	board	manufactures	because
various	voltage	regulators	are	used,	each	having	a	different	maximum	input	rating.	Power	into	this	connector	is	routed	through	a	series	diode	before	connecting	to	VIN	to	protect	against	accidental	reverse	voltage	situations.	VIN	pin	on	shield	header.	It	has	a	similar	voltage	range	of	the	barrel	jack.	Since	this	pin	doesn't	have	reverse	voltage
protection,	power	can	be	injected	or	pulled	from	this	pin.	When	supplying	power	into	VIN	pin,	an	external	series	diode	is	required	in	case	barrel	jack	is	used.	When	board	is	powered	by	barrel	jack,	power	can	be	pulled	out	of	this	pin.[14]	Arduino	Uno	R4	WiFi	with	ARM-based	R7FA4M1AB	MCU	in	64pin	SMD	package	Two	Uno	R4	boards	are	available:
Uno	R4	Minima	and	Uno	R4	WiFi.	The	latter	has	a	WiFi	coprocessor	and	LED	matrix,	but	the	Minima	doesn't.	Common	features	on	both	Uno	R4	Minima[15]	and	Uno	R4	WiFi[16]	boards:	Microcontroller	(MCU):[17]	IC:	Renesas	R7FA4M1AB	(32-bit	ARM	Cortex-M4F	core	with	single-precision	FPU)	Clock	Speed:	48	MHz	Flash	memory:	256	KB	+
bootrom	SRAM:	32	KB	(16	KB	ECC)	(16	KB	parity)	EEPROM:	8	KB	(data	flash)	USART	peripherals:	4	SPI	peripherals:	2	I²C	peripherals:	2	Operating	Voltage:	5	Volts	USB-C	connector.	Barrel	jack	connector	and	VIN	pin	on	shield	header	supports	up	to	a	maximum	of	24	volts	DC.	Additional	features	only	available	on	the	Uno	R4	Minima	board:[15]	SWD
programming	connector.	This	is	a	10-pin	5x2	1.27mm	header	for	connecting	the	microcontroller	(R7FA4M1AB)	to	an	external	SWD	(serial	wire	debug)	programming	/	debugging	device.	Additional	features	only	available	on	the	Uno	R4	WiFi	board:[16]	WiFi	coprocessor	-	240	MHz	Espressif	ESP32-S3-MINI	(IEEE802.11	b/g/n	WiFi	and	Bluetooth	5	LE)
and	a	6-pin	3x2	2.54mm	header	for	external	programming.	12x8	LED	matrix	-	it	is	driven	by	11	GPIO	pins	using	a	charlieplexing	scheme.	Qwiic	I²C	connector.	This	4-pin	1.00mm	JST	SH	connector	provides	external	connection	to	a	3.3	volt	I²C	bus.	Don't	attach	5	volt	I²C	devices	directly	to	this	connector.[18]	RTC	battery	header	pin	(VRTC).	This	pin
connects	an	external	battery	to	the	RTC	(real-time	clock)	inside	the	microcontroller	(R7FA4M1AB)	to	keep	clock	running	when	board	is	powered	down.	Connect	this	pin	to	positive	side	of	1.6	to	3.6	volt	battery	and	negative	side	of	battery	to	ground	header	pin	(GND),	such	as	a	3	volt	lithium	coin	battery.[17]	Remote-Off	header	pin	(OFF).	This	pin
disables	the	5	volt	buck	switching	voltage	regulator	(SL854102)	when	powered	by	the	barrel	jack	or	VIN	header	pin.	Connect	this	pin	to	ground	header	pin	(GND)	to	disable	this	voltage	regulator.	Header	pinout	of	the	Arduino	Uno	board	LED:	There	is	a	built-in	LED	driven	by	digital	pin	13.	When	the	pin	is	high	value,	the	LED	is	on,	when	the	pin	is
low,	it	is	off.	VIN:	The	input	voltage	to	the	Arduino/Genuino	board	when	it	is	using	an	external	power	source	(as	opposed	to	5	volts	from	the	USB	connection	or	other	regulated	power	source).	You	can	supply	voltage	through	this	pin,	or,	if	supplying	voltage	via	the	power	jack,	access	it	through	this	pin.	5V:	This	pin	outputs	a	regulated	5V	from	the
regulator	on	the	board.	The	board	can	be	supplied	with	power	either	from	the	DC	power	jack	(7	-	20V),	the	USB	connector	(5V),	or	the	VIN	pin	of	the	board	(7-20V).	Supplying	voltage	via	the	5V	or	3.3V	pins	bypasses	the	regulator,	and	can	damage	the	board.	3V3:	A	3.3	volt	supply	generated	by	the	on-board	regulator.	Maximum	current	draw	is	50	mA.
GND:	Ground	pins.	IOREF:	This	pin	on	the	Arduino/Genuino	board	provides	the	voltage	reference	with	which	the	microcontroller	operates.	A	properly	configured	shield	can	read	the	IOREF	pin	voltage	and	select	the	appropriate	power	source,	or	enable	voltage	translators	on	the	outputs	to	work	with	the	5V	or	3.3V.	Reset:	Typically	used	to	add	a	reset
button	to	shields	that	block	the	one	on	the	board.[9]	Each	of	the	14	digital	pins	and	6	analog	pins	on	the	Uno	can	be	used	as	an	input	or	output,	under	software	control	(using	pinMode(),	digitalWrite(),	and	digitalRead()	functions).	They	operate	at	5	volts.	Each	pin	can	provide	or	receive	20	mA	as	the	recommended	operating	condition	and	has	an
internal	pull-up	resistor	(disconnected	by	default)	of	20-50K	ohm.	A	maximum	of	40mA	must	not	be	exceeded	on	any	I/O	pin	to	avoid	permanent	damage	to	the	microcontroller.	The	Uno	has	6	analog	inputs,	labeled	A0	through	A5;	each	provides	10	bits	of	resolution	(i.e.	1024	different	values).	By	default,	they	measure	from	ground	to	5	volts,	though	it
is	possible	to	change	the	upper	end	of	the	range	using	the	AREF	pin	and	the	analogReference()	function.[9]	In	addition,	some	pins	have	specialized	functions:	Serial	/	UART:	pins	0	(RX)	and	1	(TX).	Used	to	receive	(RX)	and	transmit	(TX)	TTL	serial	data.	These	pins	are	connected	to	the	corresponding	pins	of	the	ATmega8U2	USB-to-TTL	serial	chip.
External	interrupts:	pins	2	and	3.	These	pins	can	be	configured	to	trigger	an	interrupt	on	a	low	value,	a	rising	or	falling	edge,	or	a	change	in	value.	PWM	(pulse-width	modulation):	pins	3,	5,	6,	9,	10,	and	11.	Can	provide	8-bit	PWM	output	with	the	analogWrite()	function.	SPI	(Serial	Peripheral	Interface):	pins	10	(SS),	11	(MOSI),	12	(MISO),	and	13
(SCK).	These	pins	support	SPI	communication	using	the	SPI	library.	TWI	(two-wire	interface)	/	I²C:	pin	SDA	(A4)	and	pin	SCL	(A5).	Support	TWI	communication	using	the	Wire	library.	AREF	(analog	reference):	Reference	voltage	for	the	analog	inputs.[9]	The	Arduino/Genuino	Uno	has	a	number	of	facilities	for	communicating	with	a	computer,	another
Arduino/Genuino	board,	or	other	microcontrollers.	The	ATmega328	provides	UART	TTL	(5V)	serial	communication,	which	is	available	on	digital	pins	0	(RX)	and	1	(TX).	An	ATmega16U2	on	the	board	channels	this	serial	communication	over	USB	and	appears	as	a	virtual	com	port	to	software	on	the	computer.	The	16U2	firmware	uses	the	standard	USB
COM	drivers,	and	no	external	driver	is	needed.	However,	on	Windows,	a	.inf	file	is	required.	Arduino	Software	(IDE)	includes	a	serial	monitor	which	allows	simple	textual	data	to	be	sent	to	and	from	the	board.	The	RX	and	TX	LEDs	on	the	board	will	flash	when	data	is	being	transmitted	via	the	USB-to-serial	chip	and	USB	connection	to	the	computer
(but	not	for	serial	communication	on	pins	0	and	1).	A	SoftwareSerial	library	allows	serial	communication	on	any	of	the	Uno's	digital	pins.[9]	Rather	than	requiring	a	physical	press	of	the	reset	button	before	an	upload,	the	Arduino/Genuino	Uno	board	is	designed	in	a	way	that	allows	it	to	be	reset	by	the	software	running	on	a	connected	computer.	One
of	the	hardware	flow	control	lines	(DTR)	of	the	ATmega8U2/16U2	is	connected	to	the	reset	line	of	the	ATmega328	via	a	100	nanofarad	capacitor.	When	this	line	is	asserted	(taken	low),	the	reset	line	drops	long	enough	to	reset	the	chip.[9]	This	setup	has	other	implications.	When	the	Uno	is	connected	to	a	computer	running	Mac	OS	X	or	Linux,	it	resets
each	time	a	connection	is	made	to	it	from	software	(via	USB).	For	the	following	half-second	or	so,	the	bootloader	is	running	on	the	Uno.	While	it	is	programmed	to	ignore	malformed	data	(i.e.	anything	besides	an	upload	of	new	code),	it	will	intercept	the	first	few	bytes	of	data	sent	to	the	board	after	a	connection	is	opened.[9]	The	following	table
compares	official	Arduino	boards,	and	has	a	similar	layout	as	a	table	in	the	Arduino	Nano	article.	The	table	is	split	with	a	dark	bar	into	two	high-level	microcontroller	groups:	8-bit	AVR	cores	(upper	group),	and	32-bit	ARM	Cortex-M	cores	(lower	group).	Though	3rd-party	boards	have	similar	board	names	it	doesn't	automatically	mean	they	are	100%
identical	to	official	Arduino	boards.	3rd-party	boards	often	have	a	different	voltage	regulator	/	different	USB-to-UART	chip	/	different	color	solder	mask,	and	some	have	a	different	USB	connector	or	additional	features,	too.	[19]	BoardName&	Part#	BoardSizeGroup	BoardCommun-ication	MCUPart#&	Pins	MCUI/OVoltage	MCUCore	MCUClock
MCUFlash	MCUSRAM	MCUEEPROM	MCUUSART&	UART	MCUSPI	MCUI²C	MCUOther	BusPeripherals	MCU	Timers32/24/16/8/WD/RT/RC	MCUADC&	DAC	MCUEngines	Uno	R3,[20]A000066,[9]Uno	R3	SMD,[21]A000073[22]	Uno	USB-B	ATmega328P,[12]28	pin	DIP,32	pin	SMD	5V(1.8-5.5V)	8bit	AVR	16	MHz*	32	KB	2	KB	1	KB	1,	0	1	1	None	0,	0,	1,
2,WD	10bit,None	None	Uno	WiFi	R2,[23]ABX00021[24]	Uno	USB-B,WiFi,Bluetooth	ATmega4809,[25]48	pin	5V(1.8-5.5V)	8bit	AVR	16	MHz*	48	KB	6	KB	0.25	KB	4,	0	1	1	None	0,	0,	5,	0,WD,	RT	10bit,None	None	Leonardo,[26]A000057[27]	Uno	USB-Micro-B	ATmega32U4,[28]44	pin	5V(2.7-5.5V)	8bit	AVR	16	MHz	32	KB	2.5	KB	1	KB	1,	0	1	1	USB-FS	0,
0,	2,	1,WD,	10bit	10bit,None	None	Mega	2560	R3,[29]A000067[30]	Mega	USB-B	ATmega2560,[31]100	pin	5V(4.5-5.5V)	8bit	AVR	16	MHz	256	KB	8	KB	4	KB	4,	0	1	1	None	0,	0,	4,	2,WD	10bit,None	None	Uno	R4	Minima,[15]ABX00080,[32]Uno	R4	WiFi,[16]ABX00087,[33]	Uno	USB-C,WiFi*	R7FA4M1AB,[17]64	pin	5V(1.6-5.5V)	32bit	ARMCortex-
M4F(FPU)	48	MHz	256	KB+	bootrom	32	KB(ECC)(parity)	None+	8	KBdata	flash	4,	0	2	2	USB-FS,CAN-A/B	2,	0,	8,	0,WD,	RC,24bit	SysTick	14bit,12bit	DMA	x4,CRC,	RNG,Crypto,	Touch,LCD	Zero,[34]ABX00003[35]	Uno	USB-Micro-Bx2	ATSAMD21G18,[36]48	pin	3.3V(1.62-3.63V)	32bit	ARMCortex-M0+	48	MHz	256	KB	32	KB	None	6,	0	None	None
USB-FS,I²S	0,	4,	5,	0,WD,	RC,24bit	SysTick	12bit,10bit	DMA	x12,CRC32,	Touch	Due,[37]A000062[38]	Mega	USB-Micro-Bx2	ATSAM3X8E,[39]144	pin	3.3V(1.62-3.6V)	32bit	ARMCortex-M3	84	MHz	512	KB+	bootrom	96	KB	None	4,	1	1	2	USB-HS,CAN-A/B	x2,I²S,	SD	3,	0,	8,	0,WD,	RT,	RC,24bit	SysTick	12bit,12bit	x2	DMA	x8,RNG	GIGA	R1	WiFi,
[40]ABX00063[41]	Mega	USB-C,USB-A,WiFi,Bluetooth	STM32H747XI,[42]240	pin	3.3V(1.62-3.6V)	32bit	ARMCortex-M7FCortex-M4F(dual	core)(FPU)	480	MHz(M7F),240	MHz(M4F)	2048	KB+	bootrom	1056	KB(ECC)	None	4,	5	6	4	USB-HS	&	FS,CAN-A/B/FD	x2,I²S	x4,	SD	x2,S/PDIF	x4,	CEC,SWP,	QSPI	2,	0,	18,	0,WD,	RC,24bit	SysTick	16bit	x3,12bit
x2	DMA	x4,CRC,	RNG,Graphics	Arduino	Leonardo	board	with	ATmega32U4	MCU	Arduino	Due	board	with	ATSAM3X8E	MCU	Table	notes	Board	Size	Group	column	-	Simplified	board	dimension	size	grouping:	Uno	means	similar	size	as	Arduino	Uno	R3	and	Duemilanove	(predecessor)	boards,	Mega	means	similar	size	as	the	longer	Arduino	Mega	2560
R3	and	Mega	(predecessor)	boards.	This	table	has	a	similar	layout	as	a	table	in	the	Arduino	Nano	article.	MCU	Part#	/	Pins	column	-	MCU	means	microcontroller.	All	MCU	information	in	this	table	was	sourced	from	official	datasheets	in	this	column.	The	pin	count	is	useful	to	determine	the	quantity	of	internal	MCU	features	that	are	available.	All	MCU
hardware	features	may	not	be	available	at	the	shield	header	pins	because	the	MCU	IC	package	has	more	pins	than	the	shield	header	pins	on	the	Arduino	board	(*).	MCU	I/O	Voltage	column	-	Microcontrollers	on	official	Arduino	boards	are	powered	at	a	fixed	voltage	of	either	3.3	or	5	volts,	though	some	3rd	party	boards	have	a	voltage	selection	switch.
The	voltage	rating	of	the	microcontroller	is	stated	inside	parenthesis,	though	Arduino	boards	don't	support	this	full	range.	MCU	Clock	column	-	MHz	means	106	Hertz.	The	ATmega328P	MPU	and	ATmega4809	MCU	are	rated	for	a	maximum	of	20	MHz,	but	the	Uno	R3	and	Uno	WiFi	R2	boards	both	operate	at	16	MHz.	The	following	Arduino	boards
have	a	32.768	kHz	crystal	too:	Uno	WiFi	R2,	Zero,	Due,	GIGA	R1	WiFi.	The	Uno	R4	Minima	has	SMD	footprints	for	a	32.768KHz	crystal	and	two	capacitors,	but	aren't	installed.	MCU	memory	columns	-	KB	means	1024	bytes,	MB	means	10242	bytes.	The	R7FA4M1AB	MCU	(Uno	R4	boards)	contains	data	flash	memory	instead	of	EEPROM	memory.	MCU
SRAM	column	-	SRAM	size	doesn't	include	caches	or	peripheral	buffers.	ECC	means	SRAM	has	error	correction	code	checking,	Par	means	SRAM	has	parity	checking.	MCU	USART/UART	column	-	USARTs	are	software	configurable	to	be	a:	UART	/	SPI	/	other	peripherals	(varies	across	MCUs).	MCU	Other	Bus	Peripherals	column	-	For	USB	bus,	"FS"
means	Full	Speed	(12	Mbps	max),	"HS"	means	High	Speed	(480	Mbps	max).	For	CAN	bus,	"A"	means	CAN	2.0A,	"B"	means	CAN	2.0B,	"FD"	means	CAN-FD.	Some	buses	require	additional	external	circuitry	to	operate.	MCU	Timers	column	-	The	numbers	in	this	column	are	the	total	number	of	each	timer	bit	width,	for	example,	the	ATmega328P	has	one
16-bit	timer	and	two	8-bit	timers.	"WD"	means	Watchdog	timer,	"RT"	means	Real	Time	Counter/Timer,	"RC"	means	Real	Time	Clock	(sec/min/hr).	The	24-bit	SysTick	timer(s)	inside	the	ARM	cores	aren't	included	in	the	24-bit	total	in	this	column.	PWM	features	are	not	documented	in	this	table.	AVR	microcontrollers	Atmel	AVR	instruction	set	In-system
programming	^	a	b	c	"Arduino	UNO	for	beginners	-	Projects,	Programming	and	Parts".	makerspaces.com.	7	February	2017.	Retrieved	4	February	2018.	^	"Arduino	FAQ".	5	April	2013.	Archived	from	the	original	on	27	November	2020.	Retrieved	21	February	2018.	^	a	b	"What	is	Arduino?".	learn.sparkfun.com.	Retrieved	4	February	2018.	^	a	b
"Introduction	to	Arduino"	(PDF).	princeton.edu.	Archived	from	the	original	(PDF)	on	3	April	2018.	Retrieved	4	February	2018.	^	"Arduino	Nano".	Arduino	Official	Store.	Retrieved	2022-12-07.	^	"Arduino	Leonardo	with	Headers".	Archived	from	the	original	on	2021-05-15.	^	"Previous	IDE	Releases".	Retrieved	2023-02-08.	^	"Arduino	Older	Boards".
Retrieved	2023-02-08.	^	a	b	c	d	e	f	g	h	"Board;	Uno	R3;	Store".	Arduino.	^	a	b	Hernando	Barragán	(2016-01-01).	"The	Untold	History	of	Arduino".	arduinohistory.github.io.	Retrieved	2016-03-06.	^	"Introducing	the	Arduino	UNO	R4!	-	News	-	SparkFun	Electronics".	www.sparkfun.com.	Retrieved	2023-08-07.	^	a	b	"MCU;	ATmega328P;	Docs".
Microchip.	Archived	from	the	original	on	March	27,	2023.	^	"What	is	Arduino	UNO?	A	Getting	Started	Guide".	www.rs-online.com.	Retrieved	2021-08-04.	^	"Using	Vin	pin	on	Arduino	with	a	shield".	Electrical	Engineering	Stack	Exchange.	Retrieved	2024-01-20.	^	a	b	c	"Board;	Uno	R4	Minima;	Docs".	Arduino.	Archived	from	the	original	on	June	27,
2023.	^	a	b	c	"Board;	Uno	R4	WiFi;	Docs".	Arduino.	Archived	from	the	original	on	June	27,	2023.	^	a	b	c	"MCU;	R7FA4M1AB;	Docs".	Renesas.	Archived	from	the	original	on	May	8,	2023.	^	"Qwiic	I2C	Connect	System".	SparkFun.	Archived	from	the	original	on	September	7,	2023.	^	"Seeeduino	v4.3	(UNO	ATmega328P)".	Seeed	Studio.	Archived	from
the	original	on	November	22,	2023.	^	"Board;	Uno	R3;	Docs".	Arduino.	Archived	from	the	original	on	May	17,	2023.	^	"Board;	Uno	R3	SMD;	Docs".	Arduino.	Archived	from	the	original	on	May	8,	2023.	^	"Board;	Uno	R3	SMD;	Store".	Arduino.	^	"Board;	UNO	WiFi	R2;	Docs".	Arduino.	Archived	from	the	original	on	March	28,	2023.	^	"Board;	Uno	WiFi
R2;	Store".	Arduino.	^	"MCU;	ATmega4809;	Docs".	Microchip.	Archived	from	the	original	on	December	6,	2022.	^	"Board;	Leonardo;	Docs".	Arduino.	Archived	from	the	original	on	April	5,	2023.	^	"Board;	Leonardo;	Store".	Arduino.	^	"MCU;	ATmega32U4;	Docs".	Microchip.	Archived	from	the	original	on	April	5,	2023.	^	"Board;	Mega	2560	R3;	Docs".
Arduino.	Archived	from	the	original	on	April	21,	2023.	^	"Board;	Mega	2560	R3;	Store".	Arduino.	^	"MCU;	ATmeg2560;	Docs".	Microchip.	Archived	from	the	original	on	March	1,	2023.	^	"Board;	Uno	R4	Minima;	Store".	Arduino.	^	"Board;	Uno	R4	WiFi;	Store".	Arduino.	^	"Board;	Zero;	Docs".	Arduino.	Archived	from	the	original	on	May	8,	2023.	^
"Board;	Zero;	Store".	Arduino.	^	"MCU;	ATSAMD21G18;	Docs".	Microchip.	Archived	from	the	original	on	February	1,	2023.	^	"Board;	Due;	Docs".	Arduino.	Archived	from	the	original	on	May	8,	2023.	^	"Board;	Due;	Store".	Arduino.	^	"MCU;	ATSAM3X8E;	Docs".	Microchip.	Archived	from	the	original	on	October	26,	2022.	^	"Board;	GIGA	R1	WiFi;
Docs".	Arduino.	Archived	from	the	original	on	May	14,	2023.	^	"Board;	GIGA	R1	WiFi;	Store".	Arduino.	^	"MCU;	STM32H747XI;	Docs".	ST.	Archived	from	the	original	on	May	11,	2023.	Attribution:		This	article	incorporates	text	available	under	the	CC	BY-SA	3.0	license.	Main	article:	List	of	books	about	Arduino	Wikimedia	Commons	has	media	related
to	Arduino	UNO.	Arduino	Uno	official	webpage	What's	the	difference	between	UNO	R3	and	UNO	R4	boards?	Comparison	of	Various	Arduino	Boards	Programming	Cheat	Sheets	Sheet1,	Sheet2	Pinout	Diagrams	Arduino	Uno	Board,	ATmega328	DIP	IC,	ATmega328	SMD	IC	Electronic	Schematics	Uno	"DIP"	R3,	Uno	SMD	R3,	Uno	R4	Minima,	Uno	R4
WiFi	Differences	Between	Uno	Board	Revisions	(R1/R2/R3)	Mechanical	Drawings	Dimensions	and	Hole	Patterns	Dimensions,	Hole	Patterns,	Header	Locations	and	PCB	Templates	Retrieved	from	"	Microcontroller	board	Arduino	UnoArduino	Uno	R3	SMD	board	with	ATmega328P	MCU	in	SMD
packageDeveloperarduino.ccManufacturerManyTypeSingle-board	microcontroller[1]AvailabilityUno	R4	webpageOperating	systemNone,	with	bootloader	(default),	FreeRTOSCPU	Atmel	AVR	(8-bit)	ARM	Cortex-M0+	(32-bit)	ARM	Cortex-M3	(32-bit)	Intel	Quark	(x86)	(32-bit)	MemorySRAMStorageFlash,	EEPROMWebsitearduino.cc	The	Arduino	Uno	is	a
series	of	open-source	microcontroller	board	based	on	a	diverse	range	of	microcontrollers	(MCU).	It	was	initially	developed	and	released	by	Arduino	company	in	2010.[2][3]	The	microcontroller	board	is	equipped	with	sets	of	digital	and	analog	input/output	(I/O)	pins	that	may	be	interfaced	to	various	expansion	boards	(shields)	and	other	circuits.[1]	The
board	has	14	digital	I/O	pins	(six	capable	of	PWM	output),	6	analog	I/O	pins,	and	is	programmable	with	the	Arduino	IDE	(Integrated	Development	Environment),	via	a	type	B	USB	cable.[4]	It	can	be	powered	by	a	USB	cable	or	a	barrel	connector	that	accepts	voltages	between	7	and	20	volts,	such	as	a	rectangular	9-volt	battery.	It	has	the	same
microcontroller	as	the	Arduino	Nano	board,	and	the	same	headers	as	the	Leonardo	board.[5][6]	The	hardware	reference	design	is	distributed	under	a	Creative	Commons	Attribution	Share-Alike	2.5	license	and	is	available	on	the	Arduino	website.	Layout	and	production	files	for	some	versions	of	the	hardware	are	also	available.	The	word	"uno"	means
"one"	in	Italian	and	was	chosen	to	mark	a	major	redesign	of	the	Arduino	hardware	and	software.[7]	The	Uno	board	was	the	successor	of	the	Duemilanove	release	and	was	the	9th	version	in	a	series	of	USB-based	Arduino	boards.[8]	Version	1.0	of	the	Arduino	IDE	for	the	Arduino	Uno	board	has	now	evolved	to	newer	releases.[4]	The	ATmega328	on	the
board	comes	preprogrammed	with	a	bootloader	that	allows	uploading	new	code	to	it	without	the	use	of	an	external	hardware	programmer.[3]	While	the	Uno	communicates	using	the	original	STK500	protocol,[1]	it	differs	from	all	preceding	boards	in	that	it	does	not	use	a	FTDI	USB-to-UART	serial	chip.	Instead,	it	uses	the	Atmega16U2	(Atmega8U2	up
to	version	R2)	programmed	as	a	USB-to-serial	converter.[9]	Arduino	RS232	Serial	board	-	a	predecessor	with	ATmega8	MCU	The	Arduino	project	started	at	the	Interaction	Design	Institute	Ivrea	(IDII)	in	Ivrea,	Italy.	At	that	time,	the	students	used	a	BASIC	Stamp	microcontroller,	at	a	cost	that	was	a	considerable	expense	for	many	students.	In	2003,
Hernando	Barragán	created	the	development	platform	Wiring	as	a	Master's	thesis	project	at	IDII,	under	the	supervision	of	Massimo	Banzi	and	Casey	Reas,	who	are	known	for	work	on	the	Processing	language.	The	project	goal	was	to	create	simple,	low-cost	tools	for	creating	digital	projects	by	non-engineers.	The	Wiring	platform	consisted	of	a	printed
circuit	board	(PCB)	with	an	ATmega168	microcontroller,	an	IDE	based	on	Processing,	and	library	functions	to	easily	program	the	microcontroller.[10]	In	2003,	Massimo	Banzi,	with	David	Mellis,	another	IDII	student,	and	David	Cuartielles,	added	support	for	the	cheaper	ATmega8	microcontroller	to	Wiring.	But	instead	of	continuing	the	work	on	Wiring,
they	forked	the	project	and	renamed	it	Arduino.	Early	Arduino	boards	used	the	FTDI	USB-to-UART	serial	chip	and	an	ATmega168.[10]	The	Uno	differed	from	all	preceding	boards	by	featuring	the	ATmega328P	microcontroller	and	an	ATmega16U2	(Atmega8U2	up	to	version	R2)	programmed	as	a	USB-to-serial	converter.	In	June	2023,	Arduino	released
two	new	flavors	of	the	Uno;	R4	Minima	and	R4	Wifi.	These	mark	a	departure	from	previous	boards	as	they	use	Renesas	RA4M1	ARM	Cortex	M4	microcontroller,	and	the	R4	Wifi	a	Espressif	ESP32-S3-MINI	co-processor.	These	versions	are	form	factor,	pin	and	power	compatible	with	version	R1	to	R3,	so	should	be	largely	be	able	to	be	drop	in
replacements.[11]	Arduino	Uno	R3	board	with	AVR-based	ATmega328P	MCU	in	DIP-28	package	Microcontroller	(MCU):[12]	IC:	Microchip	ATmega328P	(8-bit	AVR	core)	Clock	Speed:	16	MHz	on	Uno	board,	though	IC	is	capable	of	20	MHz	maximum	at	5	Volts	Flash	memory:	32	KB,	of	which	0.5	KB	used	by	the	bootloader	SRAM:	2	KB	EEPROM:	1	KB
USART	peripherals:	1	(Arduino	software	default	configures	USART	as	a	8N1	UART)	SPI	peripherals:	1	I²C	peripherals:	1	Operating	Voltage:	5	Volts	Digital	I/O	Pins:	14	PWM	Pins:	6	(Pin	#	3,	5,	6,	9,	10	and	11)[13]	Analog	Input	Pins:	6	DC	Current	per	I/O	Pin:	20	mA	DC	Current	for	3.3V	Pin:	50	mA	Size:	68.6	mm	x	53.4	mm	Weight:	25	g	ICSP	Header:
Yes	Power	Sources:	USB	connector.	USB	bus	specification	has	a	voltage	range	of	4.75	to	5.25	volts.	The	official	Uno	boards	have	a	USB-B	connector,	but	3rd	party	boards	may	have	a	miniUSB	/	microUSB	/	USB-C	connector.	5.5mm/2.1mm	barrel	jack	connector.	Official	Uno	boards	support	6	to	20	volts,	though	7	to	12	volts	is	recommended.	The
maximum	voltage	for	3rd	party	Uno	boards	varies	between	board	manufactures	because	various	voltage	regulators	are	used,	each	having	a	different	maximum	input	rating.	Power	into	this	connector	is	routed	through	a	series	diode	before	connecting	to	VIN	to	protect	against	accidental	reverse	voltage	situations.	VIN	pin	on	shield	header.	It	has	a
similar	voltage	range	of	the	barrel	jack.	Since	this	pin	doesn't	have	reverse	voltage	protection,	power	can	be	injected	or	pulled	from	this	pin.	When	supplying	power	into	VIN	pin,	an	external	series	diode	is	required	in	case	barrel	jack	is	used.	When	board	is	powered	by	barrel	jack,	power	can	be	pulled	out	of	this	pin.[14]	Arduino	Uno	R4	WiFi	with
ARM-based	R7FA4M1AB	MCU	in	64pin	SMD	package	Two	Uno	R4	boards	are	available:	Uno	R4	Minima	and	Uno	R4	WiFi.	The	latter	has	a	WiFi	coprocessor	and	LED	matrix,	but	the	Minima	doesn't.	Common	features	on	both	Uno	R4	Minima[15]	and	Uno	R4	WiFi[16]	boards:	Microcontroller	(MCU):[17]	IC:	Renesas	R7FA4M1AB	(32-bit	ARM	Cortex-
M4F	core	with	single-precision	FPU)	Clock	Speed:	48	MHz	Flash	memory:	256	KB	+	bootrom	SRAM:	32	KB	(16	KB	ECC)	(16	KB	parity)	EEPROM:	8	KB	(data	flash)	USART	peripherals:	4	SPI	peripherals:	2	I²C	peripherals:	2	Operating	Voltage:	5	Volts	USB-C	connector.	Barrel	jack	connector	and	VIN	pin	on	shield	header	supports	up	to	a	maximum	of
24	volts	DC.	Additional	features	only	available	on	the	Uno	R4	Minima	board:[15]	SWD	programming	connector.	This	is	a	10-pin	5x2	1.27mm	header	for	connecting	the	microcontroller	(R7FA4M1AB)	to	an	external	SWD	(serial	wire	debug)	programming	/	debugging	device.	Additional	features	only	available	on	the	Uno	R4	WiFi	board:[16]	WiFi
coprocessor	-	240	MHz	Espressif	ESP32-S3-MINI	(IEEE802.11	b/g/n	WiFi	and	Bluetooth	5	LE)	and	a	6-pin	3x2	2.54mm	header	for	external	programming.	12x8	LED	matrix	-	it	is	driven	by	11	GPIO	pins	using	a	charlieplexing	scheme.	Qwiic	I²C	connector.	This	4-pin	1.00mm	JST	SH	connector	provides	external	connection	to	a	3.3	volt	I²C	bus.	Don't
attach	5	volt	I²C	devices	directly	to	this	connector.[18]	RTC	battery	header	pin	(VRTC).	This	pin	connects	an	external	battery	to	the	RTC	(real-time	clock)	inside	the	microcontroller	(R7FA4M1AB)	to	keep	clock	running	when	board	is	powered	down.	Connect	this	pin	to	positive	side	of	1.6	to	3.6	volt	battery	and	negative	side	of	battery	to	ground	header
pin	(GND),	such	as	a	3	volt	lithium	coin	battery.[17]	Remote-Off	header	pin	(OFF).	This	pin	disables	the	5	volt	buck	switching	voltage	regulator	(SL854102)	when	powered	by	the	barrel	jack	or	VIN	header	pin.	Connect	this	pin	to	ground	header	pin	(GND)	to	disable	this	voltage	regulator.	Header	pinout	of	the	Arduino	Uno	board	LED:	There	is	a	built-in
LED	driven	by	digital	pin	13.	When	the	pin	is	high	value,	the	LED	is	on,	when	the	pin	is	low,	it	is	off.	VIN:	The	input	voltage	to	the	Arduino/Genuino	board	when	it	is	using	an	external	power	source	(as	opposed	to	5	volts	from	the	USB	connection	or	other	regulated	power	source).	You	can	supply	voltage	through	this	pin,	or,	if	supplying	voltage	via	the
power	jack,	access	it	through	this	pin.	5V:	This	pin	outputs	a	regulated	5V	from	the	regulator	on	the	board.	The	board	can	be	supplied	with	power	either	from	the	DC	power	jack	(7	-	20V),	the	USB	connector	(5V),	or	the	VIN	pin	of	the	board	(7-20V).	Supplying	voltage	via	the	5V	or	3.3V	pins	bypasses	the	regulator,	and	can	damage	the	board.	3V3:	A
3.3	volt	supply	generated	by	the	on-board	regulator.	Maximum	current	draw	is	50	mA.	GND:	Ground	pins.	IOREF:	This	pin	on	the	Arduino/Genuino	board	provides	the	voltage	reference	with	which	the	microcontroller	operates.	A	properly	configured	shield	can	read	the	IOREF	pin	voltage	and	select	the	appropriate	power	source,	or	enable	voltage
translators	on	the	outputs	to	work	with	the	5V	or	3.3V.	Reset:	Typically	used	to	add	a	reset	button	to	shields	that	block	the	one	on	the	board.[9]	Each	of	the	14	digital	pins	and	6	analog	pins	on	the	Uno	can	be	used	as	an	input	or	output,	under	software	control	(using	pinMode(),	digitalWrite(),	and	digitalRead()	functions).	They	operate	at	5	volts.	Each
pin	can	provide	or	receive	20	mA	as	the	recommended	operating	condition	and	has	an	internal	pull-up	resistor	(disconnected	by	default)	of	20-50K	ohm.	A	maximum	of	40mA	must	not	be	exceeded	on	any	I/O	pin	to	avoid	permanent	damage	to	the	microcontroller.	The	Uno	has	6	analog	inputs,	labeled	A0	through	A5;	each	provides	10	bits	of	resolution
(i.e.	1024	different	values).	By	default,	they	measure	from	ground	to	5	volts,	though	it	is	possible	to	change	the	upper	end	of	the	range	using	the	AREF	pin	and	the	analogReference()	function.[9]	In	addition,	some	pins	have	specialized	functions:	Serial	/	UART:	pins	0	(RX)	and	1	(TX).	Used	to	receive	(RX)	and	transmit	(TX)	TTL	serial	data.	These	pins
are	connected	to	the	corresponding	pins	of	the	ATmega8U2	USB-to-TTL	serial	chip.	External	interrupts:	pins	2	and	3.	These	pins	can	be	configured	to	trigger	an	interrupt	on	a	low	value,	a	rising	or	falling	edge,	or	a	change	in	value.	PWM	(pulse-width	modulation):	pins	3,	5,	6,	9,	10,	and	11.	Can	provide	8-bit	PWM	output	with	the	analogWrite()
function.	SPI	(Serial	Peripheral	Interface):	pins	10	(SS),	11	(MOSI),	12	(MISO),	and	13	(SCK).	These	pins	support	SPI	communication	using	the	SPI	library.	TWI	(two-wire	interface)	/	I²C:	pin	SDA	(A4)	and	pin	SCL	(A5).	Support	TWI	communication	using	the	Wire	library.	AREF	(analog	reference):	Reference	voltage	for	the	analog	inputs.[9]	The
Arduino/Genuino	Uno	has	a	number	of	facilities	for	communicating	with	a	computer,	another	Arduino/Genuino	board,	or	other	microcontrollers.	The	ATmega328	provides	UART	TTL	(5V)	serial	communication,	which	is	available	on	digital	pins	0	(RX)	and	1	(TX).	An	ATmega16U2	on	the	board	channels	this	serial	communication	over	USB	and	appears
as	a	virtual	com	port	to	software	on	the	computer.	The	16U2	firmware	uses	the	standard	USB	COM	drivers,	and	no	external	driver	is	needed.	However,	on	Windows,	a	.inf	file	is	required.	Arduino	Software	(IDE)	includes	a	serial	monitor	which	allows	simple	textual	data	to	be	sent	to	and	from	the	board.	The	RX	and	TX	LEDs	on	the	board	will	flash
when	data	is	being	transmitted	via	the	USB-to-serial	chip	and	USB	connection	to	the	computer	(but	not	for	serial	communication	on	pins	0	and	1).	A	SoftwareSerial	library	allows	serial	communication	on	any	of	the	Uno's	digital	pins.[9]	Rather	than	requiring	a	physical	press	of	the	reset	button	before	an	upload,	the	Arduino/Genuino	Uno	board	is
designed	in	a	way	that	allows	it	to	be	reset	by	the	software	running	on	a	connected	computer.	One	of	the	hardware	flow	control	lines	(DTR)	of	the	ATmega8U2/16U2	is	connected	to	the	reset	line	of	the	ATmega328	via	a	100	nanofarad	capacitor.	When	this	line	is	asserted	(taken	low),	the	reset	line	drops	long	enough	to	reset	the	chip.[9]	This	setup	has
other	implications.	When	the	Uno	is	connected	to	a	computer	running	Mac	OS	X	or	Linux,	it	resets	each	time	a	connection	is	made	to	it	from	software	(via	USB).	For	the	following	half-second	or	so,	the	bootloader	is	running	on	the	Uno.	While	it	is	programmed	to	ignore	malformed	data	(i.e.	anything	besides	an	upload	of	new	code),	it	will	intercept	the
first	few	bytes	of	data	sent	to	the	board	after	a	connection	is	opened.[9]	The	following	table	compares	official	Arduino	boards,	and	has	a	similar	layout	as	a	table	in	the	Arduino	Nano	article.	The	table	is	split	with	a	dark	bar	into	two	high-level	microcontroller	groups:	8-bit	AVR	cores	(upper	group),	and	32-bit	ARM	Cortex-M	cores	(lower	group).	Though
3rd-party	boards	have	similar	board	names	it	doesn't	automatically	mean	they	are	100%	identical	to	official	Arduino	boards.	3rd-party	boards	often	have	a	different	voltage	regulator	/	different	USB-to-UART	chip	/	different	color	solder	mask,	and	some	have	a	different	USB	connector	or	additional	features,	too.	[19]	BoardName&	Part#	BoardSizeGroup
BoardCommun-ication	MCUPart#&	Pins	MCUI/OVoltage	MCUCore	MCUClock	MCUFlash	MCUSRAM	MCUEEPROM	MCUUSART&	UART	MCUSPI	MCUI²C	MCUOther	BusPeripherals	MCU	Timers32/24/16/8/WD/RT/RC	MCUADC&	DAC	MCUEngines	Uno	R3,[20]A000066,[9]Uno	R3	SMD,[21]A000073[22]	Uno	USB-B	ATmega328P,[12]28	pin	DIP,32
pin	SMD	5V(1.8-5.5V)	8bit	AVR	16	MHz*	32	KB	2	KB	1	KB	1,	0	1	1	None	0,	0,	1,	2,WD	10bit,None	None	Uno	WiFi	R2,[23]ABX00021[24]	Uno	USB-B,WiFi,Bluetooth	ATmega4809,[25]48	pin	5V(1.8-5.5V)	8bit	AVR	16	MHz*	48	KB	6	KB	0.25	KB	4,	0	1	1	None	0,	0,	5,	0,WD,	RT	10bit,None	None	Leonardo,[26]A000057[27]	Uno	USB-Micro-B	ATmega32U4,
[28]44	pin	5V(2.7-5.5V)	8bit	AVR	16	MHz	32	KB	2.5	KB	1	KB	1,	0	1	1	USB-FS	0,	0,	2,	1,WD,	10bit	10bit,None	None	Mega	2560	R3,[29]A000067[30]	Mega	USB-B	ATmega2560,[31]100	pin	5V(4.5-5.5V)	8bit	AVR	16	MHz	256	KB	8	KB	4	KB	4,	0	1	1	None	0,	0,	4,	2,WD	10bit,None	None	Uno	R4	Minima,[15]ABX00080,[32]Uno	R4	WiFi,[16]ABX00087,[33]
Uno	USB-C,WiFi*	R7FA4M1AB,[17]64	pin	5V(1.6-5.5V)	32bit	ARMCortex-M4F(FPU)	48	MHz	256	KB+	bootrom	32	KB(ECC)(parity)	None+	8	KBdata	flash	4,	0	2	2	USB-FS,CAN-A/B	2,	0,	8,	0,WD,	RC,24bit	SysTick	14bit,12bit	DMA	x4,CRC,	RNG,Crypto,	Touch,LCD	Zero,[34]ABX00003[35]	Uno	USB-Micro-Bx2	ATSAMD21G18,[36]48	pin	3.3V(1.62-
3.63V)	32bit	ARMCortex-M0+	48	MHz	256	KB	32	KB	None	6,	0	None	None	USB-FS,I²S	0,	4,	5,	0,WD,	RC,24bit	SysTick	12bit,10bit	DMA	x12,CRC32,	Touch	Due,[37]A000062[38]	Mega	USB-Micro-Bx2	ATSAM3X8E,[39]144	pin	3.3V(1.62-3.6V)	32bit	ARMCortex-M3	84	MHz	512	KB+	bootrom	96	KB	None	4,	1	1	2	USB-HS,CAN-A/B	x2,I²S,	SD	3,	0,	8,
0,WD,	RT,	RC,24bit	SysTick	12bit,12bit	x2	DMA	x8,RNG	GIGA	R1	WiFi,[40]ABX00063[41]	Mega	USB-C,USB-A,WiFi,Bluetooth	STM32H747XI,[42]240	pin	3.3V(1.62-3.6V)	32bit	ARMCortex-M7FCortex-M4F(dual	core)(FPU)	480	MHz(M7F),240	MHz(M4F)	2048	KB+	bootrom	1056	KB(ECC)	None	4,	5	6	4	USB-HS	&	FS,CAN-A/B/FD	x2,I²S	x4,	SD
x2,S/PDIF	x4,	CEC,SWP,	QSPI	2,	0,	18,	0,WD,	RC,24bit	SysTick	16bit	x3,12bit	x2	DMA	x4,CRC,	RNG,Graphics	Arduino	Leonardo	board	with	ATmega32U4	MCU	Arduino	Due	board	with	ATSAM3X8E	MCU	Table	notes	Board	Size	Group	column	-	Simplified	board	dimension	size	grouping:	Uno	means	similar	size	as	Arduino	Uno	R3	and	Duemilanove
(predecessor)	boards,	Mega	means	similar	size	as	the	longer	Arduino	Mega	2560	R3	and	Mega	(predecessor)	boards.	This	table	has	a	similar	layout	as	a	table	in	the	Arduino	Nano	article.	MCU	Part#	/	Pins	column	-	MCU	means	microcontroller.	All	MCU	information	in	this	table	was	sourced	from	official	datasheets	in	this	column.	The	pin	count	is
useful	to	determine	the	quantity	of	internal	MCU	features	that	are	available.	All	MCU	hardware	features	may	not	be	available	at	the	shield	header	pins	because	the	MCU	IC	package	has	more	pins	than	the	shield	header	pins	on	the	Arduino	board	(*).	MCU	I/O	Voltage	column	-	Microcontrollers	on	official	Arduino	boards	are	powered	at	a	fixed	voltage
of	either	3.3	or	5	volts,	though	some	3rd	party	boards	have	a	voltage	selection	switch.	The	voltage	rating	of	the	microcontroller	is	stated	inside	parenthesis,	though	Arduino	boards	don't	support	this	full	range.	MCU	Clock	column	-	MHz	means	106	Hertz.	The	ATmega328P	MPU	and	ATmega4809	MCU	are	rated	for	a	maximum	of	20	MHz,	but	the	Uno
R3	and	Uno	WiFi	R2	boards	both	operate	at	16	MHz.	The	following	Arduino	boards	have	a	32.768	kHz	crystal	too:	Uno	WiFi	R2,	Zero,	Due,	GIGA	R1	WiFi.	The	Uno	R4	Minima	has	SMD	footprints	for	a	32.768KHz	crystal	and	two	capacitors,	but	aren't	installed.	MCU	memory	columns	-	KB	means	1024	bytes,	MB	means	10242	bytes.	The	R7FA4M1AB
MCU	(Uno	R4	boards)	contains	data	flash	memory	instead	of	EEPROM	memory.	MCU	SRAM	column	-	SRAM	size	doesn't	include	caches	or	peripheral	buffers.	ECC	means	SRAM	has	error	correction	code	checking,	Par	means	SRAM	has	parity	checking.	MCU	USART/UART	column	-	USARTs	are	software	configurable	to	be	a:	UART	/	SPI	/	other
peripherals	(varies	across	MCUs).	MCU	Other	Bus	Peripherals	column	-	For	USB	bus,	"FS"	means	Full	Speed	(12	Mbps	max),	"HS"	means	High	Speed	(480	Mbps	max).	For	CAN	bus,	"A"	means	CAN	2.0A,	"B"	means	CAN	2.0B,	"FD"	means	CAN-FD.	Some	buses	require	additional	external	circuitry	to	operate.	MCU	Timers	column	-	The	numbers	in	this
column	are	the	total	number	of	each	timer	bit	width,	for	example,	the	ATmega328P	has	one	16-bit	timer	and	two	8-bit	timers.	"WD"	means	Watchdog	timer,	"RT"	means	Real	Time	Counter/Timer,	"RC"	means	Real	Time	Clock	(sec/min/hr).	The	24-bit	SysTick	timer(s)	inside	the	ARM	cores	aren't	included	in	the	24-bit	total	in	this	column.	PWM	features
are	not	documented	in	this	table.	AVR	microcontrollers	Atmel	AVR	instruction	set	In-system	programming	^	a	b	c	"Arduino	UNO	for	beginners	-	Projects,	Programming	and	Parts".	makerspaces.com.	7	February	2017.	Retrieved	4	February	2018.	^	"Arduino	FAQ".	5	April	2013.	Archived	from	the	original	on	27	November	2020.	Retrieved	21	February
2018.	^	a	b	"What	is	Arduino?".	learn.sparkfun.com.	Retrieved	4	February	2018.	^	a	b	"Introduction	to	Arduino"	(PDF).	princeton.edu.	Archived	from	the	original	(PDF)	on	3	April	2018.	Retrieved	4	February	2018.	^	"Arduino	Nano".	Arduino	Official	Store.	Retrieved	2022-12-07.	^	"Arduino	Leonardo	with	Headers".	Archived	from	the	original	on	2021-
05-15.	^	"Previous	IDE	Releases".	Retrieved	2023-02-08.	^	"Arduino	Older	Boards".	Retrieved	2023-02-08.	^	a	b	c	d	e	f	g	h	"Board;	Uno	R3;	Store".	Arduino.	^	a	b	Hernando	Barragán	(2016-01-01).	"The	Untold	History	of	Arduino".	arduinohistory.github.io.	Retrieved	2016-03-06.	^	"Introducing	the	Arduino	UNO	R4!	-	News	-	SparkFun	Electronics".
www.sparkfun.com.	Retrieved	2023-08-07.	^	a	b	"MCU;	ATmega328P;	Docs".	Microchip.	Archived	from	the	original	on	March	27,	2023.	^	"What	is	Arduino	UNO?	A	Getting	Started	Guide".	www.rs-online.com.	Retrieved	2021-08-04.	^	"Using	Vin	pin	on	Arduino	with	a	shield".	Electrical	Engineering	Stack	Exchange.	Retrieved	2024-01-20.	^	a	b	c
"Board;	Uno	R4	Minima;	Docs".	Arduino.	Archived	from	the	original	on	June	27,	2023.	^	a	b	c	"Board;	Uno	R4	WiFi;	Docs".	Arduino.	Archived	from	the	original	on	June	27,	2023.	^	a	b	c	"MCU;	R7FA4M1AB;	Docs".	Renesas.	Archived	from	the	original	on	May	8,	2023.	^	"Qwiic	I2C	Connect	System".	SparkFun.	Archived	from	the	original	on	September
7,	2023.	^	"Seeeduino	v4.3	(UNO	ATmega328P)".	Seeed	Studio.	Archived	from	the	original	on	November	22,	2023.	^	"Board;	Uno	R3;	Docs".	Arduino.	Archived	from	the	original	on	May	17,	2023.	^	"Board;	Uno	R3	SMD;	Docs".	Arduino.	Archived	from	the	original	on	May	8,	2023.	^	"Board;	Uno	R3	SMD;	Store".	Arduino.	^	"Board;	UNO	WiFi	R2;
Docs".	Arduino.	Archived	from	the	original	on	March	28,	2023.	^	"Board;	Uno	WiFi	R2;	Store".	Arduino.	^	"MCU;	ATmega4809;	Docs".	Microchip.	Archived	from	the	original	on	December	6,	2022.	^	"Board;	Leonardo;	Docs".	Arduino.	Archived	from	the	original	on	April	5,	2023.	^	"Board;	Leonardo;	Store".	Arduino.	^	"MCU;	ATmega32U4;	Docs".
Microchip.	Archived	from	the	original	on	April	5,	2023.	^	"Board;	Mega	2560	R3;	Docs".	Arduino.	Archived	from	the	original	on	April	21,	2023.	^	"Board;	Mega	2560	R3;	Store".	Arduino.	^	"MCU;	ATmeg2560;	Docs".	Microchip.	Archived	from	the	original	on	March	1,	2023.	^	"Board;	Uno	R4	Minima;	Store".	Arduino.	^	"Board;	Uno	R4	WiFi;	Store".
Arduino.	^	"Board;	Zero;	Docs".	Arduino.	Archived	from	the	original	on	May	8,	2023.	^	"Board;	Zero;	Store".	Arduino.	^	"MCU;	ATSAMD21G18;	Docs".	Microchip.	Archived	from	the	original	on	February	1,	2023.	^	"Board;	Due;	Docs".	Arduino.	Archived	from	the	original	on	May	8,	2023.	^	"Board;	Due;	Store".	Arduino.	^	"MCU;	ATSAM3X8E;	Docs".
Microchip.	Archived	from	the	original	on	October	26,	2022.	^	"Board;	GIGA	R1	WiFi;	Docs".	Arduino.	Archived	from	the	original	on	May	14,	2023.	^	"Board;	GIGA	R1	WiFi;	Store".	Arduino.	^	"MCU;	STM32H747XI;	Docs".	ST.	Archived	from	the	original	on	May	11,	2023.	Attribution:		This	article	incorporates	text	available	under	the	CC	BY-SA	3.0
license.	Main	article:	List	of	books	about	Arduino	Wikimedia	Commons	has	media	related	to	Arduino	UNO.	Arduino	Uno	official	webpage	What's	the	difference	between	UNO	R3	and	UNO	R4	boards?	Comparison	of	Various	Arduino	Boards	Programming	Cheat	Sheets	Sheet1,	Sheet2	Pinout	Diagrams	Arduino	Uno	Board,	ATmega328	DIP	IC,
ATmega328	SMD	IC	Electronic	Schematics	Uno	"DIP"	R3,	Uno	SMD	R3,	Uno	R4	Minima,	Uno	R4	WiFi	Differences	Between	Uno	Board	Revisions	(R1/R2/R3)	Mechanical	Drawings	Dimensions	and	Hole	Patterns	Dimensions,	Hole	Patterns,	Header	Locations	and	PCB	Templates	Retrieved	from	"	This	chapter	describes	the	general	physical	and	electrical
characteristics	of	specific	Arduino	boards,	from	the	Diecimila	through	recent	types	like	the	Leonardo,	Esplora,	and	Micro.	Topics	covered	include	pinout	descriptions	and	the	physical	dimensions	of	most	current	Arduino	models,	from	the	so-called	baseline	types	like	the	Uno,	to	the	large	form-factor	Mega	boards	and	the	unique	Esplora,	to	the	small-
outline	boards	such	as	the	Mini,	Micro,	and	Nano	models.	Table	4-1	is	a	comparison	of	the	most	common	Arduino	board	types.	If	you	compare	this	table	with	the	tables	in	Chapter	1	it	is	obvious	that	the	basic	capabilities	of	an	Arduino	board	are	the	capabilities	supplied	by	its	microcontroller.	However,	because	the	Arduino	designs	allocate	certain	pins
on	the	AVR	processors	to	specific	functions,	or	don’t	bring	out	all	of	the	processor’s	pins,	not	all	of	the	capabilities	of	the	microcontrollers	are	available	at	the	terminals	of	an	Arduino.	The	term	“pin”	is	used	in	this	and	other	sections	when	referring	to	the	pin	sockets	on	an	Arduino.	This	is	mainly	to	maintain	consistency	with	the	terminology
encountered	elsewhere,	but	it’s	not	completely	technically	correct.	The	connection	points	on	an	Arduino	board	are	sockets,	and	the	jumpers	and	shields	that	plug	into	these	sockets	are	the	actual	pins.	You	can	think	of	a	“pin”	as	a	connection	point	of	some	sort,	be	it	a	lead	on	an	IC	package,	a	position	on	a	0.1	inch	(2.54	mm)	socket	header,	or	the	pins
extending	from	the	bottom	of	a	shield	PCB.	Table	4-1.	Arduino	hardware	features	Board	name	Processor	VCC	(V)	Clock	(MHz)	AIN	pinsa	DIO	pinsb	PWM	pins	USBc	ArduinoBT	ATmega328	5	16	6	14	6	None	Duemilanove	ATmega168	5	16	6	14	6	Regular	Duemilanove	ATmega328	5	16	6	14	6	Regular	Diecimila	ATmega168	5	16	6	14	6	Regular	Esplora
ATmega32U4	5	16	-	-	-	Micro	Ethernet	ATmega328	5	16	6	14	4	Regular	Fio	ATmega328P	3.3	8	8	14	6	Mini	Leonardo	ATmega32U4	5	16	12	20	7	Micro	LilyPad	ATmega168V	2.7–5.5	8	6	14	6	None	LilyPad	ATmega328V	2.7–5.5	8	6	14	6	None	Mega	ATmega1280	5	16	16	54	15	Regular	Mega	ADK	ATmega2560	5	16	16	54	15	Regular	Mega	2560
ATmega2560	5	16	16	54	15	Regular	Micro	ATmega32U4	5	16	12	20	7	Micro	Mini	ATmega328	5	16	8	14	6	None	Mini	Pro	ATmega168	3.3	8	6	14	6	None	Mini	Pro	ATmega168	5	16	6	14	6	None	Nano	ATmega168	5	16	8	14	6	Mini-B	Nano	ATmega328	5	16	8	14	6	Mini-B	Pro	(168)	ATmega168	3.3	8	6	14	6	None	Pro	(328)	ATmega328	5	16	6	14	6	None
Uno	ATmega328	5	16	6	14	6	Regular	Yún	ATmega32U4	5	16	12	20	7	Host	(A)	Starting	with	the	Leonardo	board	(2012),	the	ATmega32U4	XMEGA	microcontroller	has	been	used	as	the	primary	processor.	This	part	has	a	built-in	USB	interface,	which	eliminates	the	need	for	the	additional	chip	seen	on	earlier	Arduino	models	with	a	USB	interface.	The
Leonardo	(2012),	Esplora	(2012),	Micro	(2012),	and	Yún	(2013)	all	use	the	ATmega32U4	processor.	The	older	Arduino	models	with	USB	used	an	FTDI	interface	chip	(the	FT232RL),	an	ATmega8	(Uno),	or	an	ATmega16U2	(Mega2560	and	Uno	R3).	The	FT232RL	converts	between	standard	serial	(such	as	RS-232)	and	USB.	In	the	Uno,	Uno	R3,	and
Mega2560	the	additional	small	ATmega	processors	are	preprogrammed	to	serve	as	a	USB	interface.	The	operation	of	these	parts	is	transparent	when	using	the	Arduino	IDE	to	create	and	load	program	sketches.	Those	boards	that	do	not	have	a	USB	interface	must	be	programmed	using	an	external	adapter.	Arduino	types	that	use	the	FTDI	FT232RL
serial-to-USB	interface	chip	are	essentially	identical	internally,	and	consist	of	a	DC	voltage	regulation	circuit	and	two	ICs.	Figure	4-1	shows	a	block	diagram	of	the	Diecimila	and	Duemilanove	models	with	an	FTDI	interface	chip.	Since	around	2010,	the	Uno	R2	and	Uno	SMD	boards	have	employed	the	ATmega16U2	part	instead	of	the	FTDI	FT232RL
for	the	USB	interface.	The	Uno	R3	also	has	the	ATmega16U2	serving	as	the	USB	interface.	The	ATmega16U2	incorporates	a	built-in	USB	2.0	interface	and	is	basically	the	same	as	the	ATmega32U4,	just	with	less	memory.	Figure	4-2	shows	a	block	diagram	of	the	Uno	R2	with	an	ATmega16U2	providing	the	USB	interface.	The	Uno,	with	an	ATmega8,
has	the	same	internal	functional	arrangement	as	the	Uno	R2,	just	with	a	different	MCU	serving	as	the	USB	interface.	Arduino	boards	come	in	a	variety	of	shapes	and	sizes,	but	generally	they	can	be	organized	into	four	groups:	full-size	or	baseline	boards,	mega-size	boards,	small	form-factor	boards,	and	special-purpose	boards.	The	board	dimensions
given	in	this	section,	while	generally	close,	are	approximate,	as	there	may	be	some	slight	variations	between	boards	from	different	sources.	Refer	to	the	PCB	layout	from	Arduino.cc,	which	is	available	for	each	board,	if	you	need	accurate	dimensions.	Or	better	yet,	just	take	the	measurements	from	an	actual	board.	To	give	some	idea	of	scale,	Figure	4-3
shows	a	lineup	of	several	common	Arduino	boards.	Shown	here	in	clockwise	order	from	the	lower	left	are	a	Duemilanove,	a	Leonardo,	a	clone	Mega2560	with	an	extended	I/O	pin	layout	from	SainSmart,	and	an	official	Arduino	Mega2560,	with	an	Arduino	Nano	sitting	in	the	center.	Figure	4-4	shows	the	physical	layouts	for	six	different	baseline	Arduino
boards,	from	the	Diecimila	to	the	Leonardo.	In	between	there	are	the	Duemilanove	and	Uno	variants.	Baseline,	in	this	context,	refers	to	the	“classic”	Arduino	PCB	layout	that	determines	the	physical	design	of	most	shields	and	other	add-on	components.	The	functions	of	the	I/O	and	other	pins	on	each	PCB	are	described	in	“Arduino	Pinout
Configurations”.	With	the	Diecimila,	the	Duemilanove,	the	Uno	R2	(revision	2),	and	the	Uno	SMD	the	arrangement	of	the	I/O	socket	headers	along	the	edges	of	the	PCBs	is	unchanged.	This	book	refers	to	this	as	the	baseline	Arduino	form	factor.	Also,	starting	with	the	Uno	R2	a	new	block	of	six	pins	appeared	on	the	PCB,	in	addition	to	the	block	that
already	existed	on	earlier	boards.	This	is	the	ICSP	(In-Circuit	Serial	Programming)	interface	for	the	ATmega16U2	processor	that	is	used	for	the	USB	interface.	The	Uno	SMD	also	has	this	new	ICSP	interface.	The	Uno	R3	introduced	the	new	extended	I/O	pin	configuration.	This	is	a	backward-compatible	extension,	meaning	that	a	shield	intended	for	an
older	model	like	a	Duemilanove	will	still	work	with	the	newer	boards.	The	extension	only	adds	new	signal	pin	sockets,	but	no	new	signals,	and	it	doesn’t	alter	any	of	the	pin	functions	found	in	the	baseline	layout.	The	Leonardo	PCB	uses	the	ATmega32U4	processor,	which	has	built-in	USB	support,	so	there	is	only	one	microcontroller	IC	on	a	Leonardo
PCB	and	only	one	ICSP	port.	It	has	the	same	I/O	pin	layout	as	earlier	boards,	although	the	actual	microcontroller	ports	used	are	different.	All	full-size	baseline	Arduino	boards	have	the	same	physical	dimensions,	as	shown	in	Figure	4-5.	The	locations	of	the	mounting	holes	for	the	PCB	vary	slightly	between	models	depending	on	the	version	of	the	board,
but	the	overall	exterior	dimensions	are	consistent.	The	Mega	form-factor	boards	incorporate	the	baseline	pinout	along	with	additional	pins	to	accommodate	the	extended	capabilities	of	the	ATmega1280	and	ATmega2560	microcontrollers	(these	devices	are	described	in	“ATmega1280/ATmega2560”	in	Chapter	3).	The	Mega	and	Mega2560	are
essentially	the	same	layout,	with	the	primary	difference	being	the	type	of	AVR	device	on	the	boards.	The	Mega2560	replaces	the	Mega,	which	is	no	longer	produced	by	Arduino.cc,	although	some	second-source	clone	boards	are	still	available.	Considering	the	enhanced	memory	of	the	Mega2560,	there	really	isn’t	any	reason	to	purchase	a	Mega.
Figure	4-6	shows	the	overall	dimensions	of	a	Mega	or	Mega2560	board.	Note	that	a	baseline	(Uno,	Leonardo,	etc.)	shield	will	work	with	a	Mega	board.	The	I/O	pins	on	the	Mega	are	arranged	such	that	the	basic	digital	I/O	and	the	A/D	inputs	0	through	5	are	compatible	with	the	baseline	pin	layout.	The	Mega	ADK	is	based	on	the	Mega2560,	but
features	a	USB	host	interface	that	allows	it	to	connect	to	Android	phones	and	similar	devices.	Other	than	an	additional	USB	connector	located	between	the	B	type	USB	connector	and	the	DC	power	jack,	it	is	identical	to	the	Mega2560	in	terms	of	dimensions.	Like	with	the	Mega2560,	a	standard	baseline-type	shield	can	be	used	with	the	Mega	ADK.	The
full-size	Arduino	boards	were	the	first	to	make	an	appearance	around	2005,	and	by	2007	the	layout	had	settled	into	the	baseline	and	extended	forms	seen	today.	But	the	Arduino	team	and	their	partners	realized	that	the	full-size	board	just	wouldn’t	work	for	some	applications,	so	they	came	up	with	the	miniature	formats.	The	miniature	boards	include
the	Mini,	Micro,	Nano,	and	Fio	layouts.	These	PCBs	are	smaller	in	both	width	and	length,	but	still	have	the	same	AVR	processors	as	the	full-size	types.	The	Mini	is	intended	for	use	on	breadboards	or	in	other	applications	where	space	is	limited.	It	does	not	have	a	USB	connector,	and	an	external	programmer	interface	must	be	used	to	transfer
executable	code	to	the	microcontroller.	Its	dimensions	are	shown	in	Figure	4-7.	The	Pro	Mini	is	similar	to	the	Mini	with	regard	to	pin	layout	and	form	factor,	but	unlike	the	Mini	it	is	intended	for	permanent	or	semipermanent	installation.	The	Pro	Mini	was	designed	and	manufactured	by	SparkFun	Electronics.	Its	dimensions	are	shown	in	Figure	4-8.
Similar	to	the	Mini,	the	Nano	is	a	small	form-factor	board	suitable	for	use	with	solderless	breadboards	and	as	a	plug-in	module	for	a	larger	PCB.	It	was	designed	and	produced	by	Gravitech.	Its	dimensions	are	given	in	Figure	4-9.	The	Fio	is	intended	for	wireless	applications,	primarily	XBee,	and	as	such	it	lacks	some	of	the	direct	connection
programmability	of	other	Arduino	types.	A	Fio	can	be	programmed	using	a	serial-to-USB	adapter	or	wirelessly	using	a	USB-to-XBee	adapter.	It	was	designed	and	manufactured	by	SparkFun	Electronics;	its	dimensions	are	shown	in	Figure	4-10.	The	Micro	employs	a	DIP	(dual	in-line	pin)	form	factor	and	uses	an	ATmega32U4	processor,	which	is
identical	to	the	Leonardo	board.	Like	the	Nano,	the	Micro	is	suitable	for	use	with	a	solderless	breadboard	and	as	a	plug-in	module	using	a	conventional	IC	socket.	It	was	developed	in	conjunction	with	Adafruit.	The	Micro’s	dimensions	are	shown	in	Figure	4-11.	Arduino	boards	aren’t	limited	to	simple	shapes	like	rectangles.	The	LilyPad	is	a	small	disk
with	connection	points	arranged	around	the	edge.	It	can	be	integrated	into	clothing	to	build	wearable	creations.	The	Esplora	is	physically	configured	like	a	conventional	game	controller,	although	as	it	is	an	Arduino	it	can	be	programmed	to	do	much	more	than	just	play	games.	The	LilyPad	and	its	variations	are	intended	for	wearable	applications.	The
board	itself	measures	about	2	inches	(50	mm)	in	diameter,	as	shown	in	Figure	4-12.	The	Esplora	is	supplied	with	four	pushbuttons,	a	switch-type	joystick,	and	a	micro	USB	connector.	Four	mounting	holes	are	available	to	affix	the	board	to	a	chassis	or	panel.	The	Esplora	PCB	dimensions	are	shown	in	Figure	4-13.	When	creating	a	shield	board	for	the
Arduino,	the	convention	is	to	follow	the	common	baseline	pin	layout	pattern	described	here.	This	configuration	is	found	on	the	“standard”	baseline	Arduino	boards	built	between	2007	and	2012.	Boards	using	the	newer	“extended”	pin	layout	(the	Uno	R3	and	Leonardo),	as	well	as	the	“Mega”	boards,	also	support	the	baseline	connections,	but	add	new
capabilities	by	extending	the	rows	of	terminals	along	the	sides	of	the	PCBs.	The	baseline	Arduino	pin	layout	as	it	exists	today	appeared	with	the	Diecimila	model.	Over	the	years	it	has	become	a	de	facto	standard	upon	which	numerous	shield	boards	have	been	based.	The	Arduino	boards	that	utilize	the	baseline	pin	layout	are	listed	in	Table	4-2.	Table	4-
2.	Baseline	layout	Arduino	boards	Board	name	Year	Microcontroller	Diecimila	2007	ATmega168	Duemilanove	2008	ATmega168/ATmega328	Uno	(R2	and	SMD)	2010	ATmega328P	Figure	4-14	shows	the	pinout	of	a	full-size	baseline	Arduino	board.	This	includes	the	Diecimila,	Duemilanove,	Uno	R2,	and	Uno	SMD	models.	The	gray	boxes	in	Figure	4-14
give	the	chip	pin	number	and	port	designations	for	the	ATmega168/328	parts.	The	common	baseline	I/O	and	power	pin	layout	for	the	Arduino	consists	of	14	discrete	digital	I/O	pins,	an	analog	reference,	3	ground	pins,	6	analog	input	pins,	pins	for	3.3V	and	5V,	and	a	reset	line.	As	shown	in	Figure	4-14,	these	pins	are	arranged	as	two	eight-position
connectors	and	two	six-position	connectors	along	the	sides	of	the	PCB.	From	a	programming	perspective,	each	interface	pin	on	a	Diecimila,	Duemilanove,	Uno	R2,	or	Uno	SMD	PCB	has	a	predefined	name	used	to	identify	it	in	software.	These	names	are	reflected	by	the	labels	screened	onto	the	Arduino	PCB.	Table	4-3	lists	the	pin	assignments	for	a
baseline	or	R2	Arduino	with	an	ATmega168	or	ATmega328	MCU.	See	the	pin	assignments	for	the	Arduino	Ethernet	(Table	4-3)	for	the	Uno	SMD	board.	Table	4-3.	Arduino	ATmega168/328	pin	assignments	Digital	pin	(Dn)	Analog	pin	(An)	AVR	pin	AVR	port	AVR	function(s)	AVR	PWM	0	2	PD0	RxD	1	3	PD1	TxD	2	4	PD2	INT0	3	5	PD3	INT1,	OC2B	Yes	4	6
PD4	T0,	XCK	5	11	PD5	T1	Yes	6	12	PD6	AIN0	Yes	7	13	PD7	AIN1	8	14	PB0	CLK0,	ICP1	9	15	PB1	OC1A	Yes	10	16	PB2	OC1B,	SS	Yes	11	17	PB3	OC2A,	MOSI	Yes	12	18	PB4	MISO	13	19	PB5	SCK	14	0	23	PC0	15	1	24	PC1	16	2	25	PC2	17	3	26	PC3	18	4	27	PC4	SDA	19	5	28	PC5	SCL	Starting	with	the	R3	version	of	the	Uno,	four	additional	pins	appeared

on	the	Arduino	PCB.	Two	of	these	are	near	the	relocated	reset	button	and	provide	additional	connections	for	I2C	(the	SCL	and	SDA	lines).	The	other	two	appeared	next	to	the	reset	connection	on	the	opposite	side	of	the	board.	One	is	designated	as	IOREF	(the	nominal	I/O	voltage,	may	be	either	3.3V	or	5V	depending	on	board	type)	and	the	other	is	not
presently	connected.	Table	4-4	lists	the	extended	baseline	layout	boards.	Table	4-4.	Extended	layout	Arduino	boards	Board	name	Year	Microcontroller	Uno	R3	2010	ATmega328	Ethernet	2011	ATmega328	Leonardo	2012	ATmega32U4	Like	the	Uno	R2	and	Uno	SMD,	the	Uno	R3	utilizes	a	second	microcontroller	to	handle	USB	communications.	The
Arduino	Ethernet	does	not	have	built-in	USB.	Figure	4-15	shows	the	block	diagram	for	the	Uno	R3	and	Uno	SMD	boards.	The	pin	functions	for	the	Uno	R3	are	shown	in	Figure	4-16.	The	extended	baseline	(R3)	Arduino	boards	with	the	ATmega328	MCU	have	the	same	pin	assignments	as	given	in	Table	4-3,	but	with	the	additional	pins	for	ADC4	and
ADC5	(A4	and	A5).	The	Leonardo	pin	functions	are	defined	in	“Leonardo”.	The	Ethernet	deviates	from	the	Arduino	conventions	seen	up	through	the	Uno	R3	with	its	inclusion	of	a	100Mb	Ethernet	interface	and	an	RJ45	jack.	It	has	no	USB	interface.	The	MCU	is	a	surface-mount	version	of	the	ATmega328,	with	different	pin	functions	and	numbering
from	the	ATmega328.	A	WIZnet	W5100	chip	is	used	for	the	Ethernet	interface.	Figure	4-17	shows	a	block	diagram	of	the	Ethernet	board.	An	FTDI-type	interface	is	used	to	program	the	Ethernet	with	an	adapter,	like	the	SparkFun	or	Adafruit	FTDI-type	devices.	This	interface	is	brought	out	on	a	right-angle	six-pin	header	along	one	edge	of	the	PCB	next
to	the	microSD	carrier.	Figure	4-18	shows	the	pinouts	of	the	Ethernet	board.	This	product	has	been	retired	by	Arduino.cc,	but	it	is	still	available	from	multiple	sources.	Ethernet	connectivity	can	be	obtained	by	using	an	Ethernet	shield	(see	Chapter	8	for	more	details	on	shields).	Table	4-5	lists	the	pin	assignments	for	the	Arduino	Ethernet.	Note	that
pins	10,	11,	12,	and	13	are	reserved	for	the	Ethernet	interface	and	are	not	available	for	general-purpose	use.	Table	4-5.	Arduino	Ethernet	pin	assignments	Digital	pin	(Dn)	Analog	pin	(An)	AVR	pin	AVR	port	AVR	function(s)	AVR	PWM	0	30	PD0	RxD	1	31	PD1	TxD	2	32	PD2	INT0	3	1	PD3	INT1,	OC2B	Yes	4	2	PD4	T0,	XCK	5	9	PD5	T1,	OC0B	Yes	6	10	PD6
AIN0,	OC0A	Yes	7	11	PD7	AIN1	8	12	PB0	CLK0,	ICP1	9	13	PB1	OC1A	Yes	10	14	PB2	OC1B,	SS	Yes	11	15	PB3	OC2A,	MOSI	Yes	12	16	PB4	MISO	13	17	PB5	SCK	14	0	23	PC0	15	1	24	PC1	16	2	25	PC2	17	3	26	PC3	18	4	27	PC4	SDA	19	5	28	PC5	SCL	The	Leonardo	introduced	the	ATmega32U4	processor,	which	contains	a	built-in	USB	interface	and
enhanced	functionality.	This	simplified	the	PCB	layout,	as	can	be	seen	in	Figure	4-19.	Also,	note	that	the	Leonardo	uses	a	mini-USB	connector	instead	of	the	full-size	type	B	connector	found	on	older	Arduino	boards.	This	was	a	much-needed	change,	and	it	allows	the	Leonardo	to	work	with	shields	that	would	have	interfered	with	the	B	type	USB
connector	on	the	older	models.	The	Uno	R3	and	the	Leonardo	both	use	the	same	PCB	pin	layout,	but	some	of	the	microcontroller	functions	are	different.	In	the	Arduino	IDE	this	is	handled	by	using	a	set	of	definitions	specific	to	each	board	type	to	map	functions	to	specific	pins.	Table	4-6	lists	the	pin	assignments	for	an	extended	or	R3	Arduino	with	an
ATmega32U4	MCU.	Table	4-6.	Arduino	ATmega32U4	pin	assignments	Digital	pin	(Dn)	Analog	pin	(An)	AVR	pin	AVR	port	AVR	function(s)	AVR	PWM	0	20	PD2	INT3,	RxD1	1	21	PD3	INT2,	TxD1	2	19	PD1	INT1,	SDA	3	18	PD0	INT0,	OC0B,	SCL	Yes	4	25	PD4	ICP1,	ADC8	5	31	PC6	OC3A,	OC4A	Yes	6	27	PD7	OC4D,	ADC10,	T0	Yes	7	1	PE6	INT6,	AIN0	8	28
PB4	ADC11	9	29	PB5	OC1A,	ADC12,	*OC4B	Yes	10	30	PB6	OC1B,	ADC13,	OC4B	Yes	11	12	PB7	OC0A	Yes	12	26	PD6	*OC4D,	ADC9,	T1	Yes	13	32	PC7	OC4A,	ICP3	Yes	14	0	36	PF7	TDI	15	1	37	PF6	TDO	16	2	38	PF5	TMS	17	3	39	PF4	TCK	18	4	40	PF1	19	5	41	PF0	The	Mega	series	(which	use	the	ATmega1280	and	ATmega2560	processors)	also
incorporate	the	standard	pinout	pattern,	but	include	additional	pins	to	accommodate	the	extended	I/O	capabilities	of	the	larger	processors.	The	Mega	pin	layout	is	shown	in	Figure	4-20.	The	boards	that	utilize	this	layout	are	listed	in	Table	4-7.	Most	common	shields	will	work	with	the	Mega	boards.	In	Figure	4-20,	the	PCINT	pin	functions	are	not	shown
for	the	sake	of	clarity.	Also	note	that	the	R3	version	of	the	Mega2560	contains	pins	not	found	on	earlier	versions,	but	these	do	not	interfere	with	baseline	layout–style	shields.	Table	4-7.	Mega	pin	layout	boards	Board	name	Year	Microcontroller	Mega	2009	ATmega1280	Mega2560	2010	ATmega2560	Mega	ADK	2011	ATmega2560	In	terms	of
nonstandard	pinout	configurations	(nonstandard	in	the	sense	of	being	physically	incompatible	with	conventional	Arduino	shields),	the	most	radical	is	the	LilyPad,	with	its	circular	form	factor	and	use	of	solder	pads	for	connections.	The	small	form-factor	Nano,	Mini,	Mini	Pro,	and	Micro	have	pins	soldered	to	the	underside	of	the	board,	and	are	suitable
for	use	with	a	solderless	breadboard	block	or	as	a	component	on	a	large	PCB.	The	Fio	uses	solder	pads	with	spacing	compatible	with	standard	header	pin	strips,	and	the	Esplora	has	a	game	controller–type	form	factor.	None	of	the	nonstandard	layout	boards	can	be	used	directly	with	a	standard	shield.	The	boards	that	fall	into	this	category	are	listed	in
Table	4-8,	and	the	pin	functions	for	these	boards	are	shown	in	Figures	4-21	through	4-27	in	the	following	sections.	Table	4-8.	Nonstandard	pin	layout	boards	Board	name	Year	Microcontroller	LilyPad	2007	ATmega168V/ATmega328V	Nano	2008	ATmega328/ATmega168	Mini	2008	ATmega168	Pro	Mini	2008	ATmega328	Fio	2010	ATmega328P	Esplora
2012	ATmega32U4	Micro	2012	ATmega32U4	The	Atmel	website	offers	a	selection	of	datasheets,	example	software,	and	other	resources	for	working	with	the	AVR	microcontrollers.	Note	that	these	are	only	for	the	AVR,	not	the	Arduino.	Additional	information	about	the	various	Arduino	boards	can	be	found	on	the	Arduino	website.	Get	Arduino:	A
Technical	Reference	now	with	the	O’Reilly	learning	platform.	O’Reilly	members	experience	books,	live	events,	courses	curated	by	job	role,	and	more	from	O’Reilly	and	nearly	200	top	publishers.	The	Arduino	Uno	is	one	kind	of	microcontroller	board	based	on	ATmega328,	and	Uno	is	an	Italian	term	which	means	one.	Arduino	Uno	is	named	for	marking
the	upcoming	release	of	microcontroller	board	namely	Arduino	Uno	Board	1.0.	This	board	includes	digital	I/O	pins-14,	a	power	jack,	analog	i/ps-6,	ceramic	resonator-A16	MHz,	a	USB	connection,	an	RST	button,	and	an	ICSP	header.	All	these	can	support	the	microcontroller	for	further	operation	by	connecting	this	board	to	the	computer.	The	power
supply	of	this	board	can	be	done	with	the	help	of	an	AC	to	DC	adapter,	a	USB	cable,	otherwise	a	battery.	This	article	discusses	what	is	an	Arduino	Uno	microcontroller,	pin	configuration,	Arduino	Uno	specifications	or	features,	and	applications.	What	is	Arduino	Uno	ATmega328?	The	ATmega328	is	one	kind	of	single-chip	microcontroller	formed	with
Atmel	within	the	megaAVR	family.	The	architecture	of	this	Arduino	Uno	is	a	customized	Harvard	architecture	with	8	bit	RISC	processor	core.	Other	boards	of	Arduino	Uno	include	Arduino	Pro	Mini,	Arduino	Nano,	Arduino	Due,	Arduino	Mega,	and	Arduino	Leonardo.	Arduino	Uno	ATmega328	Features	of	Arduino	Uno	Board	The	features	of	Arduino	Uno
ATmega328	includes	the	following.	The	operating	voltage	is	5V	The	recommended	input	voltage	will	range	from	7v	to	12V	The	input	voltage	ranges	from	6v	to	20V	Digital	input/output	pins	are	14	Analog	i/p	pins	are	6	DC	Current	for	each	input/output	pin	is	40	mA	DC	Current	for	3.3V	Pin	is	50	mA	Flash	Memory	is	32	KB	SRAM	is	2	KB	EEPROM	is	1
KB	CLK	Speed	is	16	MHz	Arduino	Uno	Pin	Diagram	The	Arduino	Uno	board	can	be	built	with	power	pins,	analog	pins,	ATmegs328,	ICSP	header,	Reset	button,	power	LED,	digital	pins,	test	led	13,	TX/RX	pins,	USB	interface,	an	external	power	supply.	The	Arduino	UNO	board	description	is	discussed	below.	Arduino	Uno	Board	Pin	Configuration	Power
Supply	The	Arduino	Uno	power	supply	can	be	done	with	the	help	of	a	USB	cable	or	an	external	power	supply.	The	external	power	supplies	mainly	include	AC	to	DC	adapter	otherwise	a	battery.	The	adapter	can	be	connected	to	the	Arduino	Uno	by	plugging	into	the	power	jack	of	the	Arduino	board.	Similarly,	the	battery	leads	can	be	connected	to	the
Vin	pin	and	the	GND	pin	of	the	POWER	connector.	The	suggested	voltage	range	will	be	7	volts	to	12	volts.	Input	&	Output	The	14	digital	pins	on	the	Arduino	Uno	can	be	used	as	input	&	output	with	the	help	of	the	functions	like	pinMode(),	digitalWrite(),	&	Digital	Read().	Pin1	(TX)	&	Pin0	(RX)	(Serial):	This	pin	is	used	to	transmit	&	receive	TTL	serial
data,	and	these	are	connected	to	the	ATmega8U2	USB	to	TTL	Serial	chip	equivalent	pins.	Pin	2	&	Pin	3	(External	Interrupts):	External	pins	can	be	connected	to	activate	an	interrupt	over	a	low	value,	change	in	value.	Pins	3,	5,	6,	9,	10,	&	11	(PWM):	This	pin	gives	8-bit	PWM	o/p	by	the	function	of	analogWrite().	SPI	Pins	(Pin-10	(SS),	Pin-11	(MOSI),	Pin-
12	(MISO),	Pin-13	(SCK):	These	pins	maintain	SPI-communication,	even	though	offered	by	the	fundamental	hardware,	is	not	presently	included	within	the	Arduino	language.	Pin-13(LED):	The	inbuilt	LED	can	be	connected	to	pin-13	(digital	pin).	As	the	HIGH-value	pin,	the	light	emitting	diode	is	activated,	whenever	the	pin	is	LOW.	Pin-4	(SDA)	&	Pin-5
(SCL)	(I2C):	It	supports	TWI-communication	with	the	help	of	the	Wire	library.	AREF	(Reference	Voltage):	The	reference	voltage	is	for	the	analog	i/ps	with	analogReference().	Reset	Pin:	This	pin	is	used	for	reset	(RST)	the	microcontroller.	Memory	The	memory	of	this	Atmega328	Arduino	microcontroller	includes	flash	memory-32	KB	for	storing
code,	SRAM-2	KB	EEPROM-1	KB.	Communication	The	Arduino	Uno	ATmega328	offers	UART	TTL-serial	communication,	and	it	is	accessible	on	digital	pins	like	TX	(1)	and	RX	(0).	The	software	of	an	Arduino	has	a	serial	monitor	that	permits	easy	data.	There	are	two	LEDs	on	the	board	like	RX	&	TX	which	will	blink	whenever	data	is	being	broadcasted
through	the	USB.	A	SoftwareSerial	library	permits	for	serial	communication	on	Arduino	Uno	digital	pins	and	the	ATmega328P	supports	TWI	(I2C)	as	well	as	SPI-communication.	The	Arduino	software	contains	a	wired	library	for	simplifying	the	utilization	of	the	I2C	bus.	How	to	Use	an	Arduino	Uno?	Arduino	Uno	can	detect	the	surroundings	from	the
input.	Here	the	input	is	a	variety	of	sensors	and	these	can	affect	its	surroundings	through	controlling	motors,	lights,	other	actuators,	etc.	The	ATmega328	microcontroller	on	the	Arduino	board	can	be	programmed	with	the	help	of	an	Arduino	programming	language	and	the	IDE	(Integrated	Development	Environment).	Arduino	projects	can
communicate	by	software	while	running	on	a	PC.	Arduino	Programming	Once	the	Arduino	IDE	tool	is	installed	in	the	PC,	attach	the	Arduino	board	to	the	computer	with	the	help	of	USB	cable.		Open	the	Arduino	IDE	&	select	the	right	board	by	choosing	Tools–>Board..>Arduino	Uno,	and	select	the	right	Port	by	choosing	Tools–>Port.	This	board	can	be
programmed	with	the	help	of	an	Arduino	programming	language	depends	on	Wiring.	To	activate	the	Arduino	board	&	flash	the	LED	on	the	board,	dump	the	program	code	with	the	selection	of	Files–>	Examples..>Basics..>Flash.	When	the	programming	codes	are	dumped	into	the	IDE,	and	then	click	the	button	‘upload’	on	the	top	bar.	Once	this
process	is	completed,	check	the	LED	flash	on	the	board.	High	Voltage	Protection	of	USB	The	Arduino	Uno	board	has	a	rearrangeable	poly	fuse	that	defends	the	USB	port	of	the	PC	from	the	over-voltage.	Though	most	of	the	PCs	have	their	own	inner	protection,	the	fuse	gives	an	additional	coating	of	safety.	If	above	500mA	is	given	to	the	USB	port,	then
the	fuse	will	routinely	crack	the	connection	until	the	over-voltage	is	removed.	Physical	Characteristics	The	physical	characteristics	of	an	Arduino	board	mainly	include	length	and	width.	The	printed	circuit	board	of	the	Arduino	Uno	length	and	width	are	2.7	X	2.1	inches,	but	the	power	jack	and	the	USB	connector	will	extend	beyond	the	previous
measurement.	The	board	can	be	attached	on	the	surface	otherwise	case	with	the	screw	holes.	Applications	of	Arduino	Uno	ATmega328	The	applications	of	Arduino	Uno	include	the	following.	Arduino	Uno	is	used	in	Do-it-Yourself	projects	prototyping.	In	developing	projects	based	on	code-based	control	Development	of	Automation	System	Designing	of
basic	circuit	designs.	Thus,	this	is	all	about	Arduino	Uno	datasheet.	From	the	above	information	finally,	we	can	conclude	that	this	is	an	8-bit	ATmega328P	microcontroller.	It	has	different	components	like	serial	communication,	crystal	oscillator,	the	voltage	regulator	for	supporting	the	microcontroller.	This	board	includes	a	USB	connection,	digital	I/O
pins-14,	analog	i/p	pins-6,	a	power-barrel	jack,	a	reset	button,	and	an	ICSP	header.	Here	is	a	question	for	you,	what	is	the	Arduino	Uno	price	in	India?	Family	of	microcontrollers	This	article	is	about	the	series	of	AVR	microcontrollers.	For	the	AVR	instruction	set,	see	Atmel	AVR	instruction	set.	Not	to	be	confused	with	automatic	voltage	regulator.	AVR
logo	Various	older	AVR	microcontrollers:	ATmega8	in	28-pin	narrow	dual	in-line	package	(DIP-28N),	ATxmega128A1	in	100-pin	thin	quad	flat	pack	(TQFP-100)	package,	ATtiny45	in	8-pin	small	outline	(SO-8)	package	ATmega328P	in	28-pin	narrow	dual	in-line	package	(DIP-28N).	It	is	commonly	found	on	Arduino	boards.	AVR	is	a	family	of
microcontrollers	developed	since	1996	by	Atmel,	acquired	by	Microchip	Technology	in	2016.	They	are	8-bit	RISC	single-chip	microcontrollers	based	on	a	modified	Harvard	architecture.	AVR	was	one	of	the	first	microcontroller	families	to	use	on-chip	flash	memory	for	program	storage,	as	opposed	to	one-time	programmable	ROM,	EPROM,	or	EEPROM
used	by	other	microcontrollers	at	the	time.	AVR	microcontrollers	are	used	numerously	as	embedded	systems.	They	are	especially	common	in	hobbyist	and	educational	embedded	applications,	popularized	by	their	inclusion	in	many	of	the	Arduino	line	of	open	hardware	development	boards.	The	AVR	8-bit	microcontroller	architecture	was	introduced	in
1997.	By	2003,	Atmel	had	shipped	500	million	AVR	flash	microcontrollers.[1]	The	AVR	architecture	was	conceived	by	two	students	at	the	Norwegian	Institute	of	Technology	(NTH),[2]	Alf-Egil	Bogen[3]	and	Vegard	Wollan.[4]	Atmel	says	that	the	name	AVR	is	not	an	acronym	and	does	not	stand	for	anything	in	particular.	The	creators	of	the	AVR	give	no
definitive	answer	as	to	what	the	term	"AVR"	stands	for.[4]	However,	it	is	commonly	accepted	that	AVR	stands	for	Alf	and	Vegard's	RISC	processor.[5]	Note	that	the	use	of	"AVR"	in	this	article	generally	refers	to	the	8-bit	RISC	line	of	Atmel	AVR	microcontrollers.	The	original	AVR	MCU	was	developed	at	a	local	ASIC	house[clarification	needed]	in
Trondheim,	Norway,	called	Nordic	VLSI	at	the	time,	now	Nordic	Semiconductor,	where	Bogen	and	Wollan	were	working	as	students.[citation	needed]	It	was	known	as	a	μRISC	(Micro	RISC)[6]	and	was	available	as	silicon	IP/building	block	from	Nordic	VLSI.[7]	When	the	technology	was	sold	to	Atmel	from	Nordic	VLSI,	the	internal	architecture	was
further	developed	by	Bogen	and	Wollan	at	Atmel	Norway,	a	subsidiary	of	Atmel.	The	designers	worked	closely	with	compiler	writers	at	IAR	Systems	to	ensure	that	the	AVR	instruction	set	provided	efficient	compilation	of	high-level	languages.[8]	Among	the	first	of	the	AVR	line	was	the	AT90S8515,	which	in	a	40-pin	DIP	package	has	the	same	pinout	as
an	8051	microcontroller,	including	the	external	multiplexed	address	and	data	bus.	The	polarity	of	the	RESET	line	was	opposite	(8051's	having	an	active-high	RESET,	while	the	AVR	has	an	active-low	RESET),	but	other	than	that	the	pinout	was	identical.	The	Arduino	platform,	developed	for	simple	electronics	projects,	was	released	in	2005	and	featured
ATmega8	AVR	microcontrollers.	The	AVR	is	a	modified	Harvard	architecture	machine,	where	program	and	data	are	stored	in	separate	physical	memory	systems	that	appear	in	different	address	spaces,	but	having	the	ability	to	read	data	items	from	program	memory	using	special	instructions.	AVRs	are	generally	classified	into	following:	tinyAVR	–	the
ATtiny	series	Main	article:	ATtiny	microcontroller	comparison	chart	Flash	size	Frequency[MHz]	Package	SRAM	EEPROM	0.5–32	KB	1.6–20	6–32-pin	package	32–3072	bytes	64–512	bytes	The	ATtiny	series	features	small	package	microcontrollers	with	a	limited	peripheral	set	available.	However,	the	improved	tinyAVR	0/1/2-series	(released	in	2016)
include:	Peripherals	equal	to	or	exceed	megaAVR	0-series	Event	System	Improved	AVRxt	instruction	set	(improved	timing	of	calls),	hardware	multiply	megaAVR	–	the	ATmega	series	Flash	size	Frequency[MHz]	Package	SRAM	EEPROM	4–256	KB	1.6–20	28–100-pin	package	256–16384	bytes	256–4096	bytes	The	ATmega	series	features	microcontrollers
that	provide	an	extended	instruction	set	(multiply	instructions	and	instructions	for	handling	larger	program	memories),	an	extensive	peripheral	set,	a	solid	amount	of	program	memory,	as	well	as	a	wide	range	of	pins	available.	The	megaAVR	0-series	(released	in	2016)	also	has	functionality	such	as:	Event	system	New	peripherals	with	enhanced
functionality	Improved	AVRxt	instruction	set	(improved	timing	of	calls)	AVR	Dx	–	The	AVR	Dx	family	features	multiple	microcontroller	series,	focused	on	HCI,	analog	signal	conditioning	and	functional	safety.	Flash	size	Frequency[MHz]	Package	SRAM	EEPROM	Release	year	16–128	KB	20–24	at	1.8–5.5	V	14–64-pin	package	4–16	KB	512	bytes	2020
The	parts	numbers	is	formatted	as	AVRffDxpp,	where	ff	is	flash	size,	x	is	family,	and	pp	is	number	of	pins.	Example:	AVR128DA64	–	64-pin	DA-series	with	128k	flash.	All	devices	in	the	AVR	Dx	family	include:	an	Async	Type	D	timer	that	can	run	faster	than	the	CPU	12-bit	ADC	10-bit	DAC	AVR	DA-series	(early	2020)	–	The	high	memory	density	makes
these	MCUs	well	suited	for	both	wired	and	wireless	communication-stack-intensive	functions.	integrated	sensors	for	capacitative	touch	measurement	(HCI)	updated	core	independent	peripherals	(CIPs)	and	analog	peripherals	no	external	high	frequency	crystal	AVR	DB-series	(mid-late	2020)	–	inherits	many	features	from	the	DA-family,	while	adding	its
own:	2	or	3	on-chip	opamps	MultiVoltage	IO	(MVIO)	on	PORTC	Supports	external	HF	crystal	AVR	DD-series	16–64	KiB	Flash	2–8	KiB	SRAM	14–32-pin	package	internal	24	MHz	oscillator	7–23-channel	130	kS/s	12-bit	differential	Analog-to-Digital	Converter	(ADC)	no	amplifiers	1	analog	comparator	Two	USARTs,	one	SPI,	one	dual-mode	TWI	Multi-
Voltage	Input/Output	(MVIO)	support	on	3	or	4	pins	on	Port	C	4	Configurable	Custom	Logic	(CCL)	cells,	6	Event	System	channels	AVR	EA-series	8–64	KiB	Flash	28–48-pin	package	internal	20	MHz	oscillator	24–32-channel	130	kS/s	12-bit	differential	Analog-to-Digital	Converter	(ADC)	Programmable	Gain	Amplifier	(PGA)	with	up	to	16x	gain	2	analog
comparators	Three	USARTs,	one	SPI,	one	dual-mode	TWI	no	Multi-Voltage	Input/Output	(MVIO)	4	Configurable	Custom	Logic	(CCL)	cells,	6	Event	System	channels	XMEGA	Flash	size	Frequency[MHz]	Package	SRAM	EEPROM	Release	year	16–256	KB	32	44–100-pin	package	1–32	KB	512–2048	bytes	—	the	ATxmega	series	offers	a	wide	variety	of
peripherals	and	functionality	such	as:	Extended	performance	features,	such	as	DMA,	"Event	System",	and	cryptography	support	Extensive	peripheral	set	with	ADCs	Application-specific	AVR	megaAVRs	with	special	features	not	found	on	the	other	members	of	the	AVR	family,	such	as	LCD	controller,	USB	controller,	advanced	PWM,	CAN,	etc.	FPSLIC
(AVR	with	FPGA)	FPGA	5k	to	40k	gates	SRAM	for	the	AVR	program	code,	unlike	all	other	AVRs	AVR	core	can	run	at	up	to	50	MHz[9]	32-bit	AVRsMain	article:	AVR32	In	2006,	Atmel	released	microcontrollers	based	on	the	32-bit	AVR32	architecture.	This	was	a	completely	different	architecture	unrelated	to	the	8-bit	AVR,	intended	to	compete	with	the
ARM-based	processors.	It	had	a	32-bit	data	path,	SIMD	and	DSP	instructions,	along	with	other	audio-	and	video-processing	features.	The	instruction	set	was	similar	to	other	RISC	cores,	but	it	was	not	compatible	with	the	original	AVR	(nor	any	of	the	various	ARM	cores).	Since	then	support	for	AVR32	has	been	dropped	from	Linux	as	of	kernel	4.12;
compiler	support	for	the	architecture	in	GCC	was	never	mainlined	into	the	compiler's	central	source-code	repository	and	was	available	primarily	in	a	vendor-supported	fork.	At	the	time	that	AVR32	was	introduced,	Atmel	had	already	been	a	licensee	of	the	ARM	architecture,	with	both	ARM7	and	ARM9	microcontrollers	having	been	released	prior	to
and	concurrently	with	the	AVR32;	later	Atmel	focused	most	development	effort	on	32-bit	chips	with	ARM	Cortex-M	and	Cortex-A	cores.	Atmel	ATxmega128A1	in	100-pin	TQFP	package	ATMEL	MEGA32U4	die	shot	The	AVRs	have	32	single-byte	registers	and	are	classified	as	8-bit	RISC	devices.	Flash,	EEPROM,	and	SRAM	are	all	integrated	onto	a
single	chip,	removing	the	need	for	external	memory	in	most	applications.	Some	devices	have	a	parallel	external	bus	option	to	allow	adding	additional	data	memory	or	memory-mapped	devices.	Almost	all	devices	(except	the	smallest	TinyAVR	chips)	have	serial	interfaces,	which	can	be	used	to	connect	larger	serial	EEPROMs	or	flash	chips.	Program
instructions	are	stored	in	non-volatile	flash	memory.	Although	the	MCUs	are	8-bit,	each	instruction	takes	one	or	two	16-bit	words.	The	size	of	the	program	memory	is	usually	indicated	in	the	naming	of	the	device	itself	(e.g.,	the	ATmega64x	line	has	64	KB	of	flash,	while	the	ATmega32x	line	has	32	KB).	There	is	no	provision	for	off-chip	program	memory;
all	code	executed	by	the	AVR	core	must	reside	in	the	on-chip	flash.	However,	this	limitation	does	not	apply	to	the	AT94	FPSLIC	AVR/FPGA	chips.	The	data	address	space	consists	of	the	register	file,	I/O	registers,	and	SRAM.	Some	small	models	also	map	the	program	ROM	into	the	data	address	space,	but	larger	models	do	not.	In	the	tinyAVR	and
megaAVR	variants	of	the	AVR	architecture,	the	working	registers	are	mapped	in	as	the	first	32	data	memory	addresses	(000016–001F16),	followed	by	64	I/O	registers	(002016–005F16).	In	devices	with	many	peripherals,	these	registers	are	followed	by	160	“extended	I/O”	registers,	only	accessible	as	memory-mapped	I/O	(006016–00FF16).	Actual
SRAM	starts	after	these	register	sections,	at	address	006016	or,	in	devices	with	"extended	I/O",	at	010016.	Even	though	there	are	separate	addressing	schemes	and	optimized	opcodes	for	accessing	the	register	file	and	the	first	64	I/O	registers,	all	can	also	be	addressed	and	manipulated	as	if	they	were	in	SRAM.	The	very	smallest	of	the	tinyAVR
variants	use	a	reduced	architecture	with	only	16	registers	(r0	through	r15	are	omitted)	which	are	not	addressable	as	memory	locations.	I/O	memory	begins	at	address	000016,	followed	by	SRAM.	In	addition,	these	devices	have	slight	deviations	from	the	standard	AVR	instruction	set.	Most	notably,	the	direct	load/store	instructions	(LDS/STS)	have	been
reduced	from	2	words	(32	bits)	to	1	word	(16	bits),	limiting	the	total	direct	addressable	memory	(the	sum	of	both	I/O	and	SRAM)	to	128	bytes.	Conversely,	the	indirect	load	instruction's	(LD)	16-bit	address	space	is	expanded	to	also	include	non-volatile	memory	such	as	Flash	and	configuration	bits;	therefore,	the	Load	Program	Memory	(LPM)
instruction	is	unnecessary	and	omitted.	(For	detailed	info,	see	Atmel	AVR	instruction	set.)	In	the	XMEGA	variant,	the	working	register	file	is	not	mapped	into	the	data	address	space;	as	such,	it	is	not	possible	to	treat	any	of	the	XMEGA's	working	registers	as	though	they	were	SRAM.	Instead,	the	I/O	registers	are	mapped	into	the	data	address	space
starting	at	the	very	beginning	of	the	address	space.	Additionally,	the	amount	of	data	address	space	dedicated	to	I/O	registers	has	grown	substantially	to	4096	bytes	(000016–0FFF16).	As	with	previous	generations,	however,	the	fast	I/O	manipulation	instructions	can	only	reach	the	first	64	I/O	register	locations	(the	first	32	locations	for	bitwise
instructions).	Following	the	I/O	registers,	the	XMEGA	series	sets	aside	a	4096	byte	range	of	the	data	address	space,	which	can	be	used	optionally	for	mapping	the	internal	EEPROM	to	the	data	address	space	(100016–1FFF16).	The	actual	SRAM	is	located	after	these	ranges,	starting	at	200016.	Each	GPIO	port	on	a	tiny	or	mega	AVR	drives	up	to	eight
pins	and	is	controlled	by	three	8-bit	registers:	DDRx,	PORTx	and	PINx,	where	x	is	the	port	identifier.	DDRx:	Data	Direction	Register,	configures	the	pins	as	either	inputs	or	outputs.	PORTx:	Output	port	register.	Sets	the	output	value	on	pins	configured	as	outputs.	Enables	or	disables	the	pull-up	resistor	on	pins	configured	as	inputs.	PINx:	Input
register,	used	to	read	an	input	signal.	On	some	devices,	this	register	can	be	used	for	pin	toggling:	writing	a	logic	one	to	a	PINx	bit	toggles	the	corresponding	bit	in	PORTx,	irrespective	of	the	setting	of	the	DDRx	bit.[10]	Newer	ATtiny	AVRs,	like	ATtiny817	and	its	siblings,	have	their	port	control	registers	somewhat	differently	defined.	xmegaAVR	have
additional	registers	for	push/pull,	totem-pole	and	pullup	configurations.	Almost	all	AVR	microcontrollers	have	internal	EEPROM	for	semi-permanent	data	storage.	Like	flash	memory,	EEPROM	can	maintain	its	contents	when	electrical	power	is	removed.	In	most	variants	of	the	AVR	architecture,	this	internal	EEPROM	memory	is	not	mapped	into	the
MCU's	addressable	memory	space.	It	can	only	be	accessed	the	same	way	an	external	peripheral	device	is,	using	special	pointer	registers	and	read/write	instructions,	which	makes	EEPROM	access	much	slower	than	other	internal	RAM.	However,	some	devices	in	the	SecureAVR	(AT90SC)	family[11]	use	a	special	EEPROM	mapping	to	the	data	or
program	memory,	depending	on	the	configuration.	The	XMEGA	family	also	allows	the	EEPROM	to	be	mapped	into	the	data	address	space.	Since	the	number	of	writes	to	EEPROM	is	limited	–	Atmel	specifies	100,000	write	cycles	in	their	datasheets	–	a	well	designed	EEPROM	write	routine	should	compare	the	contents	of	an	EEPROM	address	with
desired	contents	and	only	perform	an	actual	write	if	the	contents	need	to	be	changed.	Atmel's	AVRs	have	a	two-stage,	single-level	pipeline	design,	meaning	that	the	next	machine	instruction	is	fetched	as	the	current	one	is	executing.	Most	instructions	take	just	one	or	two	clock	cycles,	making	AVRs	relatively	fast	among	eight-bit	microcontrollers.	The
AVR	processors	were	designed	with	the	efficient	execution	of	compiled	C	code	in	mind	and	have	several	built-in	pointers	for	the	task.	Main	article:	Atmel	AVR	instruction	set	The	AVR	instruction	set	is	more	orthogonal	than	those	of	most	eight-bit	microcontrollers,	in	particular	the	8051	clones	and	PIC	microcontrollers	with	which	AVR	has	competed.
However,	it	is	not	completely	regular:	Pointer	registers	X,	Y,	and	Z	have	addressing	capabilities	that	are	different	from	each	other.	Register	locations	R0	to	R15	have	more	limited	addressing	capabilities	than	register	locations	R16	to	R31.	I/O	ports	0	to	31	can	be	bit	addressed,	unlike	I/O	ports	32	to	63.	CLR	(clear	all	bits	to	zero)	affects	flags,	while
SER	(set	all	bits	to	one)	does	not,	even	though	they	are	complementary	instructions.	(CLR	is	pseudo-op	for	EOR	R,	R;	while	SER	is	short	for	LDI	R,$FF.	Arithmetic	operations	such	as	EOR	modify	flags,	while	moves/loads/stores/branches	such	as	LDI	do	not.)	Accessing	read-only	data	stored	in	the	program	memory	(flash)	requires	special	LPM
instructions;	the	flash	bus	is	otherwise	reserved	for	instruction	memory.	Some	chip-specific	differences	affect	code	generation.	Code	pointers	(including	return	addresses	on	the	stack)	are	two	bytes	long	on	chips	with	up	to	128	KB	of	flash	memory,	but	three	bytes	long	on	larger	chips;	not	all	chips	have	hardware	multipliers;	chips	with	over	8	KB	of
flash	have	branch	and	call	instructions	with	longer	ranges;	and	so	forth.	The	mostly	regular	instruction	set	makes	C	(and	even	Ada)	compilers	fairly	straightforward	and	efficient.	GCC	has	included	AVR	support	for	quite	some	time,	and	that	support	is	widely	used.	LLVM	also	has	rudimentary	AVR	support.	In	fact,	Atmel	solicited	input	from	major
developers	of	compilers	for	small	microcontrollers,	to	determine	the	instruction	set	features	that	were	most	useful	in	a	compiler	for	high-level	languages.[8]	The	AVR	line	can	normally	support	clock	speeds	from	0	to	20	MHz,	with	some	devices	reaching	32	MHz.	Lower-powered	operation	usually	requires	a	reduced	clock	speed.	All	recent	(Tiny,	Mega,
and	Xmega,	but	not	90S)	AVRs	feature	an	on-chip	oscillator,	removing	the	need	for	external	clocks	or	resonator	circuitry.	Some	AVRs	also	have	a	system	clock	prescaler	that	can	divide	down	the	system	clock	by	up	to	1024.	This	prescaler	can	be	reconfigured	by	software	during	run-time,	allowing	the	clock	speed	to	be	optimized.	Since	all	operations
(excluding	multiplication	and	16-bit	add/subtract)	on	registers	R0–R31	are	single-cycle,	the	AVR	can	achieve	up	to	1	MIPS	per	MHz,	i.e.	an	8	MHz	processor	can	achieve	up	to	8	MIPS.	Loads	and	stores	to/from	memory	take	two	cycles,	branching	takes	two	cycles.	Branches	in	the	latest	"3-byte	PC"	parts	such	as	ATmega2560	are	one	cycle	slower	than
on	previous	devices.	AVRs	have	a	large	following	due	to	the	free	and	inexpensive	development	tools	available,	including	reasonably	priced	development	boards	and	free	development	software.	The	AVRs	are	sold	under	various	names	that	share	the	same	basic	core,	but	with	different	peripheral	and	memory	combinations.	Compatibility	between	chips	in
each	family	is	fairly	good,	although	I/O	controller	features	may	vary.	See	external	links	for	sites	relating	to	AVR	development.	AVRs	offer	a	wide	range	of	features:	Multifunction,	bi-directional	general-purpose	I/O	ports	with	configurable,	built-in	pull-up	resistors	Multiple	internal	oscillators,	including	RC	oscillator	without	external	parts	Internal,	self-
programmable	instruction	flash	memory	up	to	256	KB	(384	KB	on	XMega)	In-system	programmable	using	serial/parallel	low-voltage	proprietary	interfaces	or	JTAG	Optional	boot	code	section	with	independent	lock	bits	for	protection	On-chip	debugging	(OCD)	support	through	JTAG	or	debugWIRE	on	most	devices	The	JTAG	signals	(TMS,	TDI,	TDO,	and
TCK)	are	multiplexed	on	GPIOs.	These	pins	can	be	configured	to	function	as	JTAG	or	GPIO	depending	on	the	setting	of	a	fuse	bit,	which	can	be	programmed	via	in-system	programming	(ISP)	or	HVSP.	By	default,	AVRs	with	JTAG	come	with	the	JTAG	interface	enabled.	debugWIRE	uses	the	/RESET	pin	as	a	bi-directional	communication	channel	to
access	on-chip	debug	circuitry.	It	is	present	on	devices	with	lower	pin	counts,	as	it	only	requires	one	pin.	Internal	data	EEPROM	up	to	4	KB	Internal	SRAM	up	to	16	KB	(32	KB	on	XMega)	External	64	KB	little	endian	data	space	on	certain	models,	including	the	Mega8515	and	Mega162.	The	external	data	space	is	overlaid	with	the	internal	data	space,
such	that	the	full	64	KB	address	space	does	not	appear	on	the	external	bus	and	accesses	to	e.g.	address	010016	will	access	internal	RAM,	not	the	external	bus.	In	certain	members	of	the	XMega	series,	the	external	data	space	has	been	enhanced	to	support	both	SRAM	and	SDRAM.	As	well,	the	data	addressing	modes	have	been	expanded	to	allow	up	to
16	MB	of	data	memory	to	be	directly	addressed.	8-bit	and	16-bit	timers	PWM	output	(some	devices	have	an	enhanced	PWM	peripheral	which	includes	a	dead-time	generator)	Input	capture	that	record	a	time	stamp	triggered	by	a	signal	edge	analog	comparator	10	or	12-bit	A/D	converters,	with	multiplex	of	up	to	16	channels	12-bit	D/A	converters	A
variety	of	serial	interfaces,	including	I²C	compatible	Two-Wire	Interface	(TWI)	Synchronous/asynchronous	serial	peripherals	(UART/USART)	(used	with	RS-232,	RS-485,	and	more)	Serial	Peripheral	Interface	Bus	(SPI)	Universal	Serial	Interface	(USI):	a	multi-purpose	hardware	communication	module	that	can	be	used	to	implement	an	SPI,[12]	I2C[13]
[14]	or	UART[15]	interface.	Brownout	detection	Watchdog	timer	(WDT)	Multiple	power-saving	sleep	modes	Lighting	and	motor	control	(PWM-specific)	controller	models	CAN	controller	support	USB	controller	support	Proper	full-speed	(12	Mbit/s)	hardware	&	Hub	controller	with	embedded	AVR.	Also	freely	available	low-speed	(1.5	Mbit/s)	(HID)
bitbanging	software	emulations	Ethernet	controller	support	LCD	controller	support	Low-voltage	devices	operating	down	to	1.8	V	(to	0.7	V	for	parts	with	built-in	DC–DC	upconverter)	picoPower	devices	DMA	controllers	and	"event	system"	peripheral	communication.	Fast	cryptography	support	for	AES	and	DES	There	are	many	means	to	load	program
code	into	an	AVR	chip.	The	methods	to	program	AVR	chips	varies	from	AVR	family	to	family.	Most	of	the	methods	described	below	use	the	RESET	line	to	enter	programming	mode.	In	order	to	avoid	the	chip	accidentally	entering	such	mode,	it	is	advised	to	connect	a	pull-up	resistor	between	the	RESET	pin	and	the	positive	power	supply.[16]	6-	and	10-
pin	ISP	header	diagrams	The	in-system	programming	(ISP)	programming	method	is	functionally	performed	through	SPI,	plus	some	twiddling	of	the	Reset	line.	As	long	as	the	SPI	pins	of	the	AVR	are	not	connected	to	anything	disruptive,	the	AVR	chip	can	stay	soldered	on	a	PCB	while	reprogramming.	All	that	is	needed	is	a	6-pin	connector	and
programming	adapter.	This	is	the	most	common	way	to	develop	with	an	AVR.	The	Atmel-ICE	device	or	AVRISP	mkII	(Legacy	device)	connects	to	a	computer's	USB	port	and	performs	in-system	programming	using	Atmel's	software.	AVRDUDE	(AVR	Downloader/UploaDEr)	runs	on	Linux,	FreeBSD,	Windows,	and	Mac	OS	X,	and	supports	a	variety	of	in-
system	programming	hardware,	including	Atmel	AVRISP	mkII,	Atmel	JTAG	ICE,	older	Atmel	serial-port	based	programmers,	and	various	third-party	and	"do-it-yourself"	programmers.[17]	The	Program	and	Debug	Interface	(PDI)	is	an	Atmel	proprietary	interface	for	external	programming	and	on-chip	debugging	of	XMEGA	devices.	The	PDI	supports
high-speed	programming	of	all	non-volatile	memory	(NVM)	spaces;	flash,	EEPROM,	fuses,	lock-bits	and	the	User	Signature	Row.	This	is	done	by	accessing	the	XMEGA	NVM	controller	through	the	PDI	interface,	and	executing	NVM	controller	commands.	The	PDI	is	a	2-pin	interface	using	the	Reset	pin	for	clock	input	(PDI_CLK)	and	a	dedicated	data	pin
(PDI_DATA)	for	input	and	output.[18]	The	Unified	Program	and	Debug	Interface	(UPDI)	is	a	one-wire	interface	for	external	programming	and	on-chip	debugging	of	newer	ATtiny	and	ATmega	devices.	UPDI	chips	can	be	programmed	by	an	Atmel-ICE,	a	PICkit	4,	an	Arduino	(flashed	with	jtag2updi),[19]	or	though	a	UART	(with	a	1	kΩ	resistor	between
the	TX	and	RX	pins)	controlled	by	Microchip's	Python	utility	pymcuprog.[20]	High-voltage	serial	programming	(HVSP)[21]	is	mostly	the	backup	mode	on	smaller	AVRs.	An	8-pin	AVR	package	does	not	leave	many	unique	signal	combinations	to	place	the	AVR	into	a	programming	mode.	A	12-volt	signal,	however,	is	something	the	AVR	should	only	see
during	programming	and	never	during	normal	operation.	The	high	voltage	mode	can	also	be	used	in	some	devices	where	the	reset	pin	was	disabled	by	fuses.	High-voltage	parallel	programming	(HVPP)	is	considered	the	"final	resort"	and	may	be	the	only	way	to	correct	bad	fuse	settings	on	an	AVR	chip.	Most	AVR	models	can	reserve	a	bootloader
region,	256	bytes	to	4	KB,	where	re-programming	code	can	reside.	At	reset,	the	bootloader	runs	first	and	does	some	user-programmed	determination	whether	to	re-program	or	to	jump	to	the	main	application.	The	code	can	re-program	through	any	interface	available,	or	it	could	read	an	encrypted	binary	through	an	Ethernet	adapter	like	PXE.	Atmel
has	application	notes	and	code	pertaining	to	many	bus	interfaces.[22][23][24][25]	The	AT90SC	series	of	AVRs	are	available	with	a	factory	mask-ROM	for	program	memory,	instead	of	flash.[26]	Because	of	the	large	up-front	cost	and	minimum	order	quantity,	a	mask-ROM	is	only	cost-effective	for	high-production	runs.	aWire	is	a	new	one-wire	debug
interface	available	on	the	new	UC3L	AVR32	devices.	The	AVR	offers	several	options	for	debugging,	mostly	involving	on-chip	debugging	while	the	chip	is	in	the	target	system.	Main	article:	debugWIRE	debugWIRE	is	Atmel's	solution	for	providing	on-chip	debug	capabilities	via	a	single	microcontroller	pin.	It	is	useful	for	lower	pin-count	parts	which
cannot	provide	the	four	"spare"	pins	needed	for	JTAG.	The	JTAGICE	mkII,	mkIII	and	the	AVR	Dragon	support	debugWIRE.	debugWIRE	was	developed	after	the	original	JTAGICE	release,	and	now	clones	support	it.	The	Joint	Test	Action	Group	(JTAG)	feature	provides	access	to	on-chip	debugging	functionality	while	the	chip	is	running	in	the	target
system.[27]	JTAG	allows	accessing	internal	memory	and	registers,	setting	breakpoints	on	code,	and	single-stepping	execution	to	observe	system	behaviour.	Atmel	provides	a	series	of	JTAG	adapters	for	the	AVR:	The	Atmel-ICE[28]	is	the	latest	adapter.	It	supports	JTAG,	debugWire,	aWire,	SPI,	TPI,	and	PDI	interfaces.	The	JTAGICE	3[29]	is	a	midrange
debugger	in	the	JTAGICE	family	(JTAGICE	mkIII).	It	supports	JTAG,	aWire,	SPI,	and	PDI	interfaces.	The	JTAGICE	mkII[30]	replaces	the	JTAGICE	and	is	similarly	priced.	The	JTAGICE	mkII	interfaces	to	the	PC	via	USB,	and	supports	both	JTAG	and	the	newer	debugWIRE	interface.	Numerous	third-party	clones	of	the	Atmel	JTAGICE	mkII	device	started
shipping	after	Atmel	released	the	communication	protocol.[31]	The	AVR	Dragon[32]	is	a	low-cost	(approximately	$50)	substitute	for	the	JTAGICE	mkII	for	certain	target	parts.	The	AVR	Dragon	provides	in-system	serial	programming,	high-voltage	serial	programming	and	parallel	programming,	as	well	as	JTAG	or	debugWIRE	emulation	for	parts	with
32	KB	of	program	memory	or	less.	ATMEL	changed	the	debugging	feature	of	AVR	Dragon	with	the	latest	firmware	of	AVR	Studio	4	–	AVR	Studio	5	and	now	it	supports	devices	over	32	KB	of	program	memory.	The	JTAGICE	adapter	interfaces	to	the	PC	via	a	standard	serial	port.[33]	Although	the	JTAGICE	adapter	has	been	declared	"end-of-life"	by
Atmel,	it	is	still	supported	in	AVR	Studio	and	other	tools.	JTAG	can	also	be	used	to	perform	a	boundary	scan	test,[34]	which	tests	the	electrical	connections	between	AVRs	and	other	boundary	scan	capable	chips	in	a	system.	Boundary	scan	is	well-suited	for	a	production	line,	while	the	hobbyist	is	probably	better	off	testing	with	a	multimeter	or
oscilloscope.	Atmel	STK500	development	board	Official	Atmel	AVR	development	tools	and	evaluation	kits	contain	a	number	of	starter	kits	and	debugging	tools	with	support	for	most	AVR	devices:	The	STK600	starter	kit	and	development	system	is	an	update	to	the	STK500.[35]	The	STK600	uses	a	base	board,	a	signal	routing	board,	and	a	target	board.
The	base	board	is	similar	to	the	STK500,	in	that	it	provides	a	power	supply,	clock,	in-system	programming,	an	RS-232	port	and	a	CAN	(Controller	Area	Network,	an	automotive	standard)	port	via	DE9	connectors,	and	stake	pins	for	all	of	the	GPIO	signals	from	the	target	device.	The	target	boards	have	ZIF	sockets	for	DIP,	SOIC,	QFN,	or	QFP	packages,
depending	on	the	board.	The	signal	routing	board	sits	between	the	base	board	and	the	target	board,	and	routes	the	signals	to	the	proper	pin	on	the	device	board.	There	are	many	different	signal	routing	boards	that	could	be	used	with	a	single	target	board,	depending	on	what	device	is	in	the	ZIF	socket.	The	STK600	allows	in-system	programming	from
the	PC	via	USB,	leaving	the	RS-232	port	available	for	the	target	microcontroller.	A	4	pin	header	on	the	STK600	labeled	'RS-232	spare'	can	connect	any	TTL	level	USART	port	on	the	chip	to	an	onboard	MAX232	chip	to	translate	the	signals	to	RS-232	levels.	The	RS-232	signals	are	connected	to	the	RX,	TX,	CTS,	and	RTS	pins	on	the	DB-9	connector.	The
STK500	starter	kit	and	development	system	features	ISP	and	high	voltage	programming	(HVP)	for	all	AVR	devices,	either	directly	or	through	extension	boards.	The	board	is	fitted	with	DIP	sockets	for	all	AVRs	available	in	DIP	packages.	STK500	Expansion	Modules:	Several	expansion	modules	are	available	for	the	STK500	board:	STK501	–	Adds	support
for	microcontrollers	in	64-pin	TQFP	packages.	STK502	–	Adds	support	for	LCD	AVRs	in	64-pin	TQFP	packages.	STK503	–	Adds	support	for	microcontrollers	in	100-pin	TQFP	packages.	STK504	–	Adds	support	for	LCD	AVRs	in	100-pin	TQFP	packages.	STK505	–	Adds	support	for	14	and	20-pin	AVRs.	STK520	–	Adds	support	for	14	and	20,	and	32-pin
microcontrollers	from	the	AT90PWM	and	ATmega	family.	STK524	–	Adds	support	for	the	ATmega32M1/C1	32-pin	CAN/LIN/Motor	Control	family.	STK525	–	Adds	support	for	the	AT90USB	microcontrollers	in	64-pin	TQFP	packages.	STK526	–	Adds	support	for	the	AT90USB	microcontrollers	in	32-pin	TQFP	packages.	The	STK200	starter	kit	and
development	system	has	a	DIP	socket	that	can	host	an	AVR	chip	in	a	40,	20,	or	8-pin	package.	The	board	has	a	4	MHz	clock	source,	8	light-emitting	diode	(LED)s,	8	input	buttons,	an	RS-232	port,	a	socket	for	a	32	KB	SRAM	and	numerous	general	I/O.	The	chip	can	be	programmed	with	a	dongle	connected	to	the	parallel	port.	Supported
microcontrollers	(according	to	the	manual)	Chip	Flash	size	EEPROM	SRAM	Frequency[MHz]	Package	AT90S1200	1	KB	64	B	0	B	12	PDIP-20	AT90S2313	2	KB	128	B	128	B	10	PDIP-20	AT90S/LS2323	2	KB	128	B	128	B	10	PDIP-8	AT90S/LS2343	2	KB	128	B	128	B	10	PDIP-8	AT90S4414	4	KB	256	B	256	B	8	PDIP-40	AT90S/LS4434	4	KB	256	B	256	B	8
PDIP-40	AT90S8515	8	KB	512	B	512	B	8	PDIP-40	AT90S/LS8535	8	KB	512	B	512	B	8	PDIP-40	The	Atmel	ICE	is	the	currently	supported	inexpensive	tool	to	program	and	debug	all	AVR	devices	(unlike	the	AVRISP/AVRISP	mkII,	Dragon,	etc.	discussed	below).	It	connects	to	and	receives	power	from	a	PC	via	USB,	and	supports	JTAG,	PDI,	aWire,
debugWIRE,	SPI,	SWD,	TPI,	and	UPDI	(the	Microchip	Unified	Program	and	Debug	Interface)	interfaces.	The	ICE	can	program	and	debug	all	AVRs	via	the	JTAG	interface,	and	program	with	additional	interfaces	as	supported	on	each	device:	8-bit	AVR	XMEGA	devices	via	the	PDI	2-wire	interface	8-bit	megaAVR	and	tinyAVR	devices	via	SPI	for	all	with
OCD	(on-chip	debugger)	support	8-bit	tinyAVR	microcontrollers	with	TPI	support	32-bit	SAM	Arm	Cortex-M	based	microcontrollers	via	SWD	Target	operating	voltage	ranges	of	1.62V	to	5.5V	are	supported	as	well	as	the	following	clock	ranges:	Supports	JTAG	&	PDI	clock	frequencies	from	32	kHz	to	7.5	MHz	Supports	aWire	baud	rates	from	7.5	kbit/s
to	7	Mbit/s	Supports	debugWIRE	baud	rates	from	4	kbit/s	to	0.5	Mbit/s	Supports	SPI	clock	frequencies	from	8	kHz	to	5	MHz	Supports	SWD	clock	frequencies	from	32	kHz	to	2	MHz	The	ICE	is	supported	by	the	Microchip	Studio	IDE,	as	well	as	a	command	line	interface	(atprogram).	The	Atmel-ICE	supports	a	limited	implementation	of	the	Data
Gateway	Interface	(DGI)	when	debugging	and	programming	features	are	not	in	use.	The	Data	Gateway	Interface	is	an	interface	for	streaming	data	from	a	target	device	to	the	connected	computer.	This	is	meant	as	a	useful	adjunct	to	the	unit	to	allow	for	demonstration	of	application	features	and	as	an	aid	in	application	level	debugging.	AVRISP	mkII
The	AVRISP	and	AVRISP	mkII	are	inexpensive	tools	allowing	all	AVRs	to	be	programmed	via	ICSP.	The	AVRISP	connects	to	a	PC	via	a	serial	port	and	draws	power	from	the	target	system.	The	AVRISP	allows	using	either	of	the	"standard"	ICSP	pinouts,	either	the	10-pin	or	6-pin	connector.	The	AVRISP	mkII	connects	to	a	PC	via	USB	and	draws	power
from	USB.	LEDs	visible	through	the	translucent	case	indicate	the	state	of	target	power.	As	the	AVRISP	mkII	lacks	driver/buffer	ICs,[36]	it	can	have	trouble	programming	target	boards	with	multiple	loads	on	its	SPI	lines.	In	such	occurrences,	a	programmer	capable	of	sourcing	greater	current	is	required.	Alternatively,	the	AVRISP	mkII	can	still	be	used
if	low-value	(~150	ohm)	load-limiting	resistors	can	be	placed	on	the	SPI	lines	before	each	peripheral	device.	Both	the	AVRISP	and	the	AVRISP	mkII	are	now	discontinued,	with	product	pages	removed	from	the	Microchip	website.	As	of	July	2019	the	AVRISP	mkII	is	still	in	stock	at	a	number	of	distributors.	There	are	also	a	number	of	3rd	party	clones
available.	AVR	Dragon	with	ISP	programming	cable	and	attached,	blue/greenish	ZIF	Socket	The	Atmel	Dragon	is	an	inexpensive	tool	which	connects	to	a	PC	via	USB.	The	Dragon	can	program	all	AVRs	via	JTAG,	HVP,	PDI,[37]	or	ICSP.	The	Dragon	also	allows	debugging	of	all	AVRs	via	JTAG,	PDI,	or	debugWire;	a	previous	limitation	to	devices	with
32	KB	or	less	program	memory	has	been	removed	in	AVR	Studio	4.18.[38]	The	Dragon	has	a	small	prototype	area	which	can	accommodate	an	8,	28,	or	40-pin	AVR,	including	connections	to	power	and	programming	pins.	There	is	no	area	for	any	additional	circuitry,	although	this	can	be	provided	by	a	third-party	product	called	the	"Dragon	Rider".[39]
The	JTAG	In	Circuit	Emulator	(JTAGICE)	debugging	tool	supports	on-chip	debugging	(OCD)	of	AVRs	with	a	JTAG	interface.	The	original	JTAGICE	(sometimes	retroactively	referred	to	as	JTAGICE	mkI)	uses	an	RS-232	interface	to	a	PC	and	can	only	program	AVRs	with	a	JTAG	interface.	The	JTAGICE	mkI	is	no	longer	in	production,	however	it	has	been
replaced	by	the	JTAGICE	mkII.	The	JTAGICE	mkII	debugging	tool	supports	on-chip	debugging	(OCD)	of	AVRs	with	SPI,	JTAG,	PDI,	and	debugWIRE	interfaces.	The	debugWire	interface	enables	debugging	using	only	one	pin	(the	Reset	pin),	allowing	debugging	of	applications	running	on	low	pin-count	microcontrollers.	The	JTAGICE	mkII	connects	using
USB,	but	there	is	an	alternate	connection	via	a	serial	port,	which	requires	using	a	separate	power	supply.	In	addition	to	JTAG,	the	mkII	supports	ISP	programming	(using	6-pin	or	10-pin	adapters).	Both	the	USB	and	serial	links	use	a	variant	of	the	STK500	protocol.	The	JTAGICE3	updates	the	mkII	with	more	advanced	debugging	capabilities	and	faster
programming.	It	connects	via	USB	and	supports	the	JTAG,	aWire,	SPI,	and	PDI	interfaces.[40]	The	kit	includes	several	adapters	for	use	with	most	interface	pinouts.	The	AVR	ONE!	is	a	professional	development	tool	for	all	Atmel	8-bit	and	32-bit	AVR	devices	with	On-Chip	Debug	capability.	It	supports	SPI,	JTAG,	PDI,	and	aWire	programming	modes	and
debugging	using	debugWIRE,	JTAG,	PDI,	and	aWire	interfaces.[41]	Atmel	ATmega169	in	64-pad	MLF	package	on	the	back	of	an	Atmel	AVR	Butterfly	board	Main	article:	AVR	Butterfly	The	very	popular	AVR	Butterfly	demonstration	board	is	a	self-contained,	battery-powered	computer	running	the	Atmel	AVR	ATmega169V	microcontroller.	It	was	built	to
show	off	the	AVR	family,	especially	a	then	new	built-in	LCD	interface.	The	board	includes	the	LCD	screen,	joystick,	speaker,	serial	port,	real	time	clock	(RTC),	flash	memory	chip,	and	both	temperature	and	voltage	sensors.	Earlier	versions	of	the	AVR	Butterfly	also	contained	a	CdS	photoresistor;	it	is	not	present	on	Butterfly	boards	produced	after	June
2006	to	allow	RoHS	compliance.[42]	The	small	board	has	a	shirt	pin	on	its	back	so	it	can	be	worn	as	a	name	badge.	The	AVR	Butterfly	comes	preloaded	with	software	to	demonstrate	the	capabilities	of	the	microcontroller.	Factory	firmware	can	scroll	your	name,	display	the	sensor	readings,	and	show	the	time.	The	AVR	Butterfly	also	has	a	piezoelectric
transducer	that	can	be	used	to	reproduce	sounds	and	music.	The	AVR	Butterfly	demonstrates	LCD	driving	by	running	a	14-segment,	six	alpha-numeric	character	display.	However,	the	LCD	interface	consumes	many	of	the	I/O	pins.	The	Butterfly's	ATmega169	CPU	is	capable	of	speeds	up	to	8	MHz,	but	it	is	factory	set	by	software	to	2	MHz	to	preserve
the	button	battery	life.	A	pre-installed	bootloader	program	allows	the	board	to	be	re-programmed	via	a	standard	RS-232	serial	plug	with	new	programs	that	users	can	write	with	the	free	Atmel	IDE	tools.	This	small	board,	about	half	the	size	of	a	business	card,	is	priced	at	slightly	more	than	an	AVR	Butterfly.	It	includes	an	AT90USB1287	with	USB	On-
The-Go	(OTG)	support,	16	MB	of	DataFlash,	LEDs,	a	small	joystick,	and	a	temperature	sensor.	The	board	includes	software,	which	lets	it	act	as	a	USB	mass	storage	device	(its	documentation	is	shipped	on	the	DataFlash),	a	USB	joystick,	and	more.	To	support	the	USB	host	capability,	it	must	be	operated	from	a	battery,	but	when	running	as	a	USB
peripheral,	it	only	needs	the	power	provided	over	USB.	Only	the	JTAG	port	uses	conventional	2.54	mm	pinout.	All	the	other	AVR	I/O	ports	require	more	compact	1.27	mm	headers.	The	AVR	Dragon	can	both	program	and	debug	since	the	32	KB	limitation	was	removed	in	AVR	Studio	4.18,	and	the	JTAGICE	mkII	is	capable	of	both	programming	and
debugging	the	processor.	The	processor	can	also	be	programmed	through	USB	from	a	Windows	or	Linux	host,	using	the	USB	"Device	Firmware	Update"	protocols.	Atmel	ships	proprietary	(source	code	included	but	distribution	restricted)	example	programs	and	a	USB	protocol	stack	with	the	device.	LUFA[43]	is	a	third-party	free	software	(MIT
license)	USB	protocol	stack	for	the	USBKey	and	other	8-bit	USB	AVRs.	The	RAVEN	kit	supports	wireless	development	using	Atmel's	IEEE	802.15.4	chipsets,	for	Zigbee	and	other	wireless	stacks.	It	resembles	a	pair	of	wireless	more-powerful	Butterfly	cards,	plus	a	wireless	USBKey;	and	costing	about	that	much	(under	$US100).	All	these	boards
support	JTAG-based	development.	The	kit	includes	two	AVR	Raven	boards,	each	with	a	2.4	GHz	transceiver	supporting	IEEE	802.15.4	(and	a	freely	licensed	Zigbee	stack).	The	radios	are	driven	with	ATmega1284p	processors,	which	are	supported	by	a	custom	segmented	LCD	driven	by	an	ATmega3290p	processor.	Raven	peripherals	resemble	the
Butterfly:	piezo	speaker,	DataFlash	(bigger),	external	EEPROM,	sensors,	32	kHz	crystal	for	RTC,	and	so	on.	These	are	intended	for	use	in	developing	remote	sensor	nodes,	to	control	relays,	or	whatever	is	needed.	The	USB	stick	uses	an	AT90USB1287	for	connections	to	a	USB	host	and	to	the	2.4	GHz	wireless	links.	These	are	intended	to	monitor	and
control	the	remote	nodes,	relying	on	host	power	rather	than	local	batteries.	A	wide	variety	of	third-party	programming	and	debugging	tools	are	available	for	the	AVR.	These	devices	use	various	interfaces,	including	RS-232,	PC	parallel	port,	and	USB.[44]	Atmel	AVR	ATmega328	28-pin	DIP	on	an	Arduino	Duemilanove	board	Atmel	AVR	ATmega8	28-pin
DIP	on	a	custom	development	board	AVRs	have	been	used	in	various	automotive	applications	such	as	security,	safety,	powertrain	and	entertainment	systems.	Atmel	has	recently	launched	a	new	publication	"Atmel	Automotive	Compilation"	to	help	developers	with	automotive	applications.	Some	current	usages	are	in	BMW,	Daimler-Chrysler	and	TRW.
The	Arduino	physical	computing	platform	is	based	on	an	ATmega328	microcontroller	(ATmega168	or	ATmega8	in	board	versions	older	than	the	Diecimila).	The	ATmega1280	and	ATmega2560,	with	more	pinout	and	memory	capabilities,	have	also	been	employed	to	develop	the	Arduino	Mega	platform.	Arduino	boards	can	be	used	with	its	language	and
IDE,	or	with	more	conventional	programming	environments	(C,	assembler,	etc.)	as	just	standardized	and	widely	available	AVR	platforms.	USB-based	AVRs	have	been	used	in	the	Microsoft	Xbox	hand	controllers.	The	link	between	the	controllers	and	Xbox	is	USB.	Numerous	companies	produce	AVR-based	microcontroller	boards	intended	for	use	by
hobbyists,	robot	builders,	experimenters	and	small	system	developers	including:	Cubloc,[45]	gnusb,[46]	BasicX,[47]	Oak	Micros,[48]	ZX	Microcontrollers,[49]	and	myAVR.[50]	There	is	also	a	large	community	of	Arduino-compatible	boards	supporting	similar	users.	Schneider	Electric	used	to	produce	the	M3000	Motor	and	Motion	Control	Chip,
incorporating	an	Atmel	AVR	Core	and	an	advanced	motion	controller	for	use	in	a	variety	of	motion	applications	but	this	has	been	discontinued.[51]	With	the	growing	popularity	of	FPGAs	among	the	open	source	community,	people	have	started	developing	open	source	processors	compatible	with	the	AVR	instruction	set.	The	OpenCores	website	lists	the
following	major	AVR	clone	projects:	pAVR,[52]	written	in	VHDL,	is	aimed	at	creating	the	fastest	and	maximally	featured	AVR	processor,	by	implementing	techniques	not	found	in	the	original	AVR	processor	such	as	deeper	pipelining.	avr_core,[53]	written	in	VHDL,	is	a	clone	aimed	at	being	as	close	as	possible	to	the	ATmega103.	Navré,[54]	written	in
Verilog,	implements	all	Classic	Core	instructions	and	is	aimed	at	high	performance	and	low	resource	usage.	It	does	not	support	interrupts.	softavrcore,[55]	written	in	Verilog,	implements	the	AVR	instruction	set	up	to	AVR5,	supports	interrupts	along	with	optional	automatic	interrupt	acknowledgement,	power	saving	via	sleep	mode	plus	some
peripheral	interfaces	and	hardware	accelerators	(such	as	UART,	SPI,	cyclic	redundancy	check	calculation	unit	and	system	timers).	These	peripherals	demonstrate	how	could	these	be	attached	to	and	configured	for	this	core.	Within	the	package,	a	full-featured	FreeRTOS	port	is	also	available	as	an	example	for	the	core	+	peripheral	utilization.	The
opencores	project	CPU	lecture[56]	written	in	VHDL	by	Dr.	Jürgen	Sauermann	explains	in	detail	how	to	design	a	complete	AVR-based	system	on	a	chip	(SoC).	In	addition	to	the	chips	manufactured	by	Atmel,	clones	are	available	from	LogicGreen	Technologies.[57]	These	parts	are	not	exact	clones	–	they	have	a	few	features	not	found	in	the	chips	they
are	"clones"	of,	and	higher	maximum	clock	speeds,	but	use	SWD	(Serial	Wire	Debug,	a	variant	of	JTAG	from	ARM)	instead	of	ISP	for	programming,	so	different	programming	tools	must	be	used.	Microcontrollers	using	the	ATmega	architecture	are	being	manufactured	by	NIIET	in	Voronezh,	Russia,	as	part	of	the	1887	series	of	integrated	circuits.	This
includes	an	ATmega128	under	the	designation	1887VE7T	(Russian:	1887ВЕ7Т).[58]	^	Atmel	press	release.	"Atmel's	AVR	Microcontroller	Ships	500	Million	Units".	^	Since	1996,	NTH	has	become	part	of	the	Norwegian	University	of	Science	and	Technology	(NTNU)	^	alfbogen.com	blog	^	a	b	Archived	at	Ghostarchive	and	the	Wayback	Machine:	"The
Story	of	AVR".	youtube.com.	^	"UNSW	School	of	Computer	Science	and	Engineering	-	General	AVR	Info".	Cse.unsw.edu.au.	Archived	from	the	original	on	2012-06-23.	Retrieved	2012-09-19.	^	An	introduction	to	Atmel	and	the	AVR	microcontroller[permanent	dead	link]	^	"Embedded	Systems	and	Microcontrollers"	(PDF).	Archived	from	the	original
(PDF)	on	2004-12-24.	Retrieved	2018-10-01.	^	a	b	Myklebust,	Gaute.	The	AVR	Microcontroller	and	C	Compiler	Co-Design	(PDF).	Atmel	Norway.	CiteSeerX	10.1.1.63.1447.	Retrieved	2012-09-19.	^	Field	Programmable	System	Level	Integrated	Circuit.	Archived	2012-11-27	at	the	Wayback	Machine.	^	atmel.com	^	Atmel	Smart	Card	ICs	^	"AVR319:
Using	the	USI	module	for	SPI	communication"	(PDF).	Atmel.	2004.	Archived	(PDF)	from	the	original	on	2012-06-17.	Retrieved	10	June	2014.	^	"Atmel	AVR310:	Using	the	USI	Module	as	a	I2C	Master"	(PDF).	Atmel.	2013.	Archived	(PDF)	from	the	original	on	2014-07-14.	Retrieved	10	June	2014.	^	"AVR312:	Using	the	USI	module	as	a	I2C	slave"	(PDF).
Atmel.	2005.	Archived	(PDF)	from	the	original	on	2014-07-14.	Retrieved	10	June	2014.	^	"AVR307:	Half	Duplex	UART	Using	the	USI	Module"	(PDF).	Atmel.	2003.	Archived	(PDF)	from	the	original	on	2014-07-14.	Retrieved	10	June	2014.	^	"AVR	Hardware	Design	Considerations"	(PDF)	(application	note).	Atmel	Corporation.	Jun	2015.	p.	5.	Archived
(PDF)	from	the	original	on	2014-12-22.	Retrieved	14	Jun	2015.	The	reset	line	has	an	internal	pull-up	resistor,	but	if	the	environment	is	noisy	it	can	be	insufficient	and	reset	can	therefore	occur	sporadically.	^	"AVRDUDE	programmer".	Savannah.nongnu.org.	Retrieved	2012-09-19.	^	"PDI	programming	driver"	(PDF).	Archived	(PDF)	from	the	original	on
2020-03-25.	Retrieved	2012-09-19.	^	"GitHub	-	ElTangas/Jtag2updi:	UPDI	programmer	software	for	Arduino	(Targets	Tiny	AVR-0/1/2,	Mega	AVR-0	and	AVR-DA/DB	MCUs)".	GitHub.	17	December	2021.	^	"pymcuprog	-	Python	MCU	programmer".	Github.	Microchip	PIC&AVR	Tools.	13	November	2022.	Retrieved	18	November	2022.	^
"HVSP_Description".	Support.atmel.no.	Archived	from	the	original	on	2009-10-12.	Retrieved	2012-09-19.	^	"DES-encrypted	AVR	Bootloader"	(PDF).	Archived	(PDF)	from	the	original	on	2005-05-16.	Retrieved	2012-09-19.	^	"AES-encrypted	AVR	Bootloader"	(PDF).	Retrieved	2012-09-19.	^	"XMEGA	Bootloader"	(PDF).	Retrieved	2012-09-19.	^	"AVR
USB	Bootloader"	(PDF).	Archived	(PDF)	from	the	original	on	2006-06-28.	Retrieved	2012-09-19.	^	"Atmel's	Self-Programming	Flash	Microcontrollers"	(PDF).	Retrieved	12	March	2020.	^	"Guide	to	understanding	JTAG	and	security	fuses	on	the	AVR".	Retrieved	2012-09-19.[permanent	dead	link]	^	"Atmel-ICE	-	Atmel	Corporation".	Atmel.com.	Retrieved
2015-09-11.	^	"JTAGICE	3-	Atmel	Corporation".	Atmel.com.	Retrieved	2012-09-19.	^	"AVR	JTAGICE	mkII".	Atmel.	Archived	from	the	original	on	15	February	2013.	Retrieved	13	January	2013.	^	"JTAGICE	mkII	Communication	Protocol"	(PDF).	Archived	(PDF)	from	the	original	on	2005-05-16.	Retrieved	2012-09-19.	^	"AVR	Dragon".	Atmel.	Retrieved	13
January	2013.	^	"AVR	JTAGICE	mkII	User's	Guide"	(PDF).	microchip.com.	Archived	(PDF)	from	the	original	on	2017-07-02.	Retrieved	25	March	2020.	^	JTAGICE	Press	Release,	2004.	Archived	2011-07-07	at	the	Wayback	Machine	^	"STK600".	Atmel.	Archived	from	the	original	on	15	February	2013.	Retrieved	13	January	2013.	^	"AVRISP	mkII
Disassembled".	Archived	from	the	original	on	2014-11-08.	Retrieved	2014-11-08.	^	"AVR1005:	Getting	started	with	XMEGA,	page	7"	(PDF).	Atmel.	Archived	(PDF)	from	the	original	on	2009-10-07.	Retrieved	7	November	2011.	^	"AVR	Studio	v4.18	Release	Notes".	Retrieved	2012-09-19.	^	"ECROS	Technology	-	Dragon	Rider".	Ecrostech.com.	2008-03-
02.	Retrieved	2012-09-19.	^	JTAGICE3	Product	Page	^	AVR	ONE!	Product	Page	^	AVR	Butterfly	^	"LUFA	(Formerly	MyUSB)".	Four	Walled	Cubicle.	Retrieved	2012-09-19.	^	See	avrffreaks.net	for	a	comprehensive	list.	^	"Comfile	Technology".	Comfile	Technology,	Inc.	Archived	from	the	original	on	17	January	2013.	Retrieved	13	January	2013.	^
"gnusb:	Open	Source	USB	Sensor	Box".	Retrieved	13	January	2013.	^	"BasicX".	NetMedia,	Inc.	Archived	from	the	original	on	23	May	2013.	Retrieved	13	January	2013.	^	"Welcome	to	Oak	Micros".	Oak	Micros.	Oak	Micros.	Archived	from	the	original	on	2012-10-25.	Retrieved	13	January	2013.	^	"ZBasic".	Retrieved	13	January	2013.	^	"myAVR".	Laser
&	Co.	Solutions	GmbH.	Retrieved	13	January	2013.	^	"M3000	Motion	controller	on	a	chip".	imshome.com.	Schneider	Electric	Motion	USA.	Archived	from	the	original	on	2009-12-02.	Retrieved	2011-08-02.	^	"pAVR	::	Overview".	OpenCores.	Retrieved	2012-09-19.	^	"AVR	Core	::	Overview".	OpenCores.	Retrieved	2012-09-19.	^	"Navré	AVR	clone	(8-bit
RISC)	Overview".	OpenCores.	Retrieved	2012-09-19.	^	"Soft	AVR	Core	+	Interfaces	Overview".	OpenCores.	Retrieved	2020-06-16.	^	"CPU	lecture".	OpenCores.	Retrieved	2015-02-16.	^	"LGT8F88A	FLASH	Microcontroller".	LogicGreen	Technologies.	Archived	from	the	original	on	2017-08-29.	Retrieved	2019-01-18,	a	clone	of	the	ATmega88.	^
"Микроконтроллеры"	[Microcontrollers]	(in	Russian).	Voronezh:	OAO	"NIIET".	Archived	from	the	original	on	22	August	2017.	Retrieved	22	August	2017.	See	also:	List	of	books	about	Arduino	Williams,	Elliot	(2014).	AVR	Programming:	Learning	to	Write	Software	for	Hardware.	Maker	Media.	ISBN	978-1449355784.	Schmidt,	Maik	(2011).	Arduino:	A
Quick	Start	Guide.	Pragmatic	Bookshelf.	ISBN	978-1-934356-66-1.	Margush,	Timothy	S.	(2011).	Some	Assembly	Required:	Assembly	Language	Programming	with	the	AVR	Microcontroller.	CRC	Press.	ISBN	978-1439820643.	Mazidi,	Muhammad	Ali;	Naimi,	Sarmad;	Naimi,	Sepehr	(2010).	AVR	Microcontroller	and	Embedded	Systems:	Using	Assembly
and	C.	Pearson.	ISBN	978-0138003319.	Wikimedia	Commons	has	media	related	to	Atmel	AVR.	The	Wikibook	Embedded	Systems	has	a	page	on	the	topic	of:	Atmel	AVR	Electronics	portal	Official	Website	Atmel	AVR	Official	Community	AVR	Freaks	community	Microchip	Forum	Pinout	Diagrams	AVR	DIP-Packages:	ATtiny44/45/84/85,	ATmega328P,
ATmega644P,	ATmega1284P	AVR	SMD-Packages:	ATmega328,	ATmega2560,	ATmega32U4	Simulators	AVR8js	(8-bit	in-browser	simulator)	Retrieved	from	"	2Microcontroller	family	78K	Family	microcontrollersGeneral	informationLaunched1986;	39	years	ago	(1986)DiscontinuedcurrentCommon	manufacturerRenesas	Electronics(formerly
NEC)PerformanceMax.	CPU	clock	rate32	kHz	to	24	MHzData	width16/8Address	width20(24)/16Architecture	and	classificationApplicationEmbeddedInstruction	set78K	FamilyPhysical	specificationsCores1Products,	models,	variantsVariant78K0R,	78K0S,	78K0,78K4,	78K6,	78K3,78K7,78K1,	78K2HistoryPredecessors87AD	Family,17K
FamilySuccessorRL78	Family	78K0/KX1+	board	with	in-circuit	emulator;	MINICUBE	78K0S/KA1+	Do	It	board	78K0R/KG3	Cool	It	board	with	in-circuit	emulator;	IECUBE	(formerly,	MINICUBE2)	78K	is	the	trademark	name	of	16-	and	8-bit	microcontroller	family[1]: 23-4–23-5 [2]: 78 	manufactured	by	Renesas	Electronics,	originally	developed	by	NEC[3]
[4]: 229 	started	in	1986.[5]: 7, line	2 	The	basis	of	78K	Family	is	an	accumulator-based	register-bank	CISC	architecture.	78K	is	a	single-chip	microcontroller,	which	usually	integrates;	program	ROM,	data	RAM,	serial	interfaces,	timers,	I/O	ports,	an	A/D	converter,	an	interrupt	controller,	and	a	CPU	core,	on	one	die.[6][7]: 412 	Its	application	area	is
mainly	simple	mechanical	system	controls	and	man-machine	interfaces.[8][9][10]	Regarding	software	development	tools,	C	compilers	and	macro-assemblers	are	available.[11]: 99 	As	for	development	tool	hardware,	full	probing-pod	type	and	debug	port	type	in-circuit	emulators,[12][13]	and	flash	ROM	programmers[14]: 22–24 	are	available.	Historically,
the	family	has	11	series	with	9	instruction	set	architectures.	As	of	2018,	3	instruction	set	architectures,	those	are	8-bit	78K0,	8-bit	78K0S,	and	16-/8-bit	78K0R,	are	still	promoted	for	customers'	new	designs.[14]	But	in	most	of	cases,	migration	to	RL78	Family,[15]	which	is	a	successor	of	78K0R	and	almost	binary	level	compatible	with	78K0R,[16]: 20 	is
recommended.[17]	78K0	Series	[de;	jp]	(also	known	as	78K/0)	is	a	long-running	8-bit	single	chip	microcontroller,[18]	which	is	the	basis	of	78K0S	[jp]	and	78K0R	Series.	It	contains	8×	8-bit	registers	×4	banks.	For	16-bit	calculating	instructions,	it	performs	ALU	operation	twice.	Each	instructions	are	performed	serially	without	instruction	pipelining.	It
has	16-bit	64K	Byte	address	space.[19]	Some	variants	of	78K0	have	affordable	and	compact	type	8-bit	R-2R	D/A	converter,	which	does	not	have	monotonicity	because	it	is	not	trimmed	for	adjustment	nor	followed	by	operational	amplifier.	In	its	earlier	stage,	the	Program	Memory	was	one-time	PROM	(OTP),	UV-EPROM,	or	mask	ROM.[20]	But	with	the
times,	it	became	flash	memory.[21][22]	78K0S	Series	(also	known	as	78K/0S)	is	a	low-end	version	of	78K0.[23][24][25]	It	has	8×	8-bit	registers,	but	without	any	banks.	In	addition,	some	instructions,	such	as	multiplication	and	division,	are	removed	from	78K0	instruction	set	architecture.[26]	78K0R	Series	is	a	16-bit	single-chip	microcontroller	with	3-
stage	instruction	pipelining.[27]	Its	instruction	set	is	similar	to	78K0	and	covers	16-	and	8-bit	operations.	It	has	20-bit	1M	Byte	address	space.[28]	75	instructions	out	of	80	are	identical	with	that	of	RL78	Family;	its	successor.[16]: 20 [15][29]	178K0	Series	(also	known	as	178K/0)	is	a	successor	of	NEC's	17K	Family	4-bit	microcontroller	for	DTS	(Digital
Tuning	Systems)	and	remote	controls.[30]	It	integrates	17K	family's	peripheral	functions	with	the	78K0	8-bit	CPU	core	on	a	chip.[31]	178K0S	Series	(also	known	as	178K/0S)	is	also	a	successor	of	17K	Family	with	the	78K0S	CPU	core.[32]	78K4	Series	(also	known	as	78K/4)	is	a	16-bit	single-chip	microcontroller	with	16	and	8-bit	operations.[33][34]
[35][36]	It	has	16×	8-bit	registers	×4	banks,	which	can	be	also	used	for	8×	16-bit	registers	×4	banks.	Some	of	these	registers	can	be	also	used	as	24-bit	extension	for	addressing	modes.[37]	It	has	24-bit	16M	Byte	address	space.	It	has	microcode-based	operations	named	Macro	Service	with	interrupt	functions.[38]: §23.8, 560–593 	78K7	Series	(also
known	as	78K/7)	is	a	32-bit	single-chip	microcontroller	with	32,	16	and	8	bit	operations.	It	has	8×	32-bit	registers	×16	banks,	which	can	be	also	used	for	16×	16-bit	registers	×16	banks	and	16×	8-bit	registers	×16	banks.	It	has	microcode-based	operations	named	Macro	Service	with	interrupt	functions.	It	has	24-bit	16M	Byte	linear	address	space.	It	is
used	for	some	Quantum	Fireball	products,[39]: Photo	2 	but	shortly	replaced	with	V850	Family	32-bit	RISC	microcontrollers.	78K6	Series	(also	known	as	78K/6)	is	a	16-bit	single-chip	microcontroller.	Its	life-time	was	short,	and	less	variants.	78K1	Series	(also	known	as	78K/1)	is	an	8-bit	single-chip	microcontroller.	It	has	8×	8-bit	registers	×4	banks.
78K1	series	is	targeted	for	servo	controls	of	videocassette	recorders.	μPD78148	sub-series	integrates	2	operational	amplifiers.[40]	78K3	Series	(also	known	as	78K/3)	is	a	16-bit	single-chip	microcontroller	with	16	and	8	bit	operations.	It	has	16×	8-bit	×8	banks,	which	can	be	also	used	for	8×	16-bit	registers	×8	banks.	Its	address	space	is	16-bit	64K
Byte.	It	is	developed	as	high-end	series	of	78K	Family.	It	has	microcode-based	operations	named	Macro	Service	with	interrupt	functions.[41]: §13.4, 261–280 	This	series	is	used	for	hard	disk	drives,	especially	Quantum	Fireball	Series.[42]	μPD78364	sub-series	is	used	for	inverter	compressor	controls.[43]	It	is	also	used	for	traction	control	systems	of
some	cars.	78K2	Series	(also	known	as	78K/2)	is	an	8-bit	single-chip	microcontroller.	It	has	8×	8-bit	registers	×4	banks.	It	is	developed	as	general	purpose	series	of	78K	Family.[44]	87AD	Family[4]: 229 	is	an	8-bit	single-chip	microcontroller.	It	has	8×	8-bit	registers	×4	banks.	Its	instruction	set	architecture	became	the	basis	of	78K.[45]	17K	Family[4]: 
229 	is	a	4-bit	single-chip	microcontroller,	especially	dedicated	for	DTS	(Digital	Tuning	Systems)	and	remote	controls.	It	has	2	plane	of	128×	4-bit	register	files,	and	sophisticated	fully	orthogonal	instruction	set.	This	instruction	set	is	completely	different	from	that	of	78K	Family.[30]	Series	ALU	Registers	Instructions	Pipeline	Remark	Documents	RL78-
S3	16-bit	8×	8-bit	×4	banks	81	(75+6)	3-stage	Successor	of	78K0R	[29]: 8 	RL78-S2	16-bit	8×	8-bit	×4	banks	75	3-stage	RL78-S1	8-bit	8×	8-bit	(no	bank)	74	(75-1)	3-stage	78K0R	16-bit	8×	8-bit	×4	banks	80	(75+5)	3-stage	Extended	78K/0	[28]: 18 	78K0S	8-bit	8×	8-bit	(no	bank)	47	none	Simplified	78K/0	[25]	78K0	8-bit	8×	8-bit	×4	banks	48	none	Basic
78K/0	core	[19]	178K0S	8-bit	8×	8-bit	47	none	78K/0S	for	DTS;Digital	Tuning	System	[25][32]	178K0	8-bit	8×	8-bit	×4	banks	48	none	78K/0	for	DTS	[19][31]	78K4	16-bit	16×	8-bit	×4	banks	113	none	Macro	service	available	[37]: 24, 128 	78K7	32-bit	16×	16-bit	×16	banks	none	Macro	service	available	[46]	78K6	16-bit	Macro	service	available	78K1	8-
bit	8×	8-bit	×4	banks	64	none	For	VCR	servo	controls	[40]: 3, 39 	78K3	16-bit	16×	8-bit	×8	banks	113–115	none	Macro	service	available	[47]: 3–28, 45 	78K2	8-bit	8×	8-bit	×4	banks	65	none	General	purpose	[44]: 16, 50 	87AD	8-bit	8×	8-bit	×2	banks	CMOS:	159NMOS:	158	none	Predecessor	of	78K	[45]: 21, 39 	(17K)	4-bit	128×	4-bit	×2	banks	47	none
Predecessor	of	178K	[30]	RL78	NEC	V20	V850	Renesas	740	IEBus	^	Oklobdzija,	Vojin	G.	(2001).	The	Computer	Engineering	Handbook.	CRC	Press.	ISBN	9780849308857.	^	Edwards,	Lewin	A.	R.	W.	(2006).	So,	You	Wanna	be	an	Embedded	Engineer:	The	Guide	to	Embedded	Engineering,	from	Consultancy	to	the	Corporate	Ladder.	Newnes.	p.	78.
ISBN	9780750679534.	NEC	78K.	^	"78k	|	The	CPU	Shack	Museum".	www.cpushack.com.	^	a	b	c	Parai,	Manas	Kumar;	Das,	Banasree;	Das,	Gautam	(January	2013).	"An	Overview	of	Microcontroller	Unit:	From	Proper	Selection	to	Specific	Application".	International	Journal	of	Soft	Computing	and	Engineering.	2	(6):	228–231.	ISSN	2231-2307.
S2CID	11529467.	^	NECエレクトロニクス	8ビットマイコンのあゆみ	[History	of	8-bit	microcontrollers	of	NEC	Electronics]	(PDF)	(in	Japanese).	Sunhayato	Corp.	^	"microcontroller".	The	Free	Dictionary.	^	Oklobdzija,	Vojin	G.	(2017).	Digital	Systems	and	Applications.	CRC	Press.	ISBN	9781351838108.	^	"NEC	Electronics	Introduces	12	New	16-bit	All
Flash	Microcontrollers	with	LCD	Controller/Driver	Circuit".	Business	Wire.	2009-01-16.	^	Garcia,	Pedro	Castillo;	Lozano,	Rogelio;	Dzul,	Alejandro	Enrique	(2006).	Modelling	and	Control	of	Mini-Flying	Machines.	Springer	Science	&	Business	Media.	ISBN	9781846281792.	^	Archived:	"MPU	&	MCU	|	Renesas	Electronics".	7	October	2012.	Archived
from	the	original	on	2012-10-07.	^	Emilio,	Maurizio	Di	Paolo	(2014).	Embedded	Systems	Design	for	High-Speed	Data	Acquisition	and	Control.	Springer.	ISBN	9783319068657.	^	Electronic	Specifier	(2009-04-19).	"NEC	Electronics'	new	78K	Primer	Kit".	www.electronicspecifier.com.	^	Bender,	Klaus;	Jack,	Peter;	Koç,	Ali;	Péter,	Istvan;	Megyeri,
Gergely	(2001).	Qualitätssicherung	eingebetteter	Software	:	Methoden	und	Best-Practices	:	[FUSIM]	(in	German).	München:	Herbert	Utz	Verlag.	ISBN	9783831600243.	^	a	b	Renesas	official:	Renesas	MPUs	&	MCUs	78K	MCU	Selection	Guide.	Renesas	Electronics.	^	a	b	Dean,	Alexander	G.;	Conrad,	James	M.	(2012).	Creating	Fast,	Responsive	and
Energy-Efficient	Embedded	Systems	using	the	Renesas	RL78	Microcontroller	(PDF).	Weston,	FL:	Micrium	Press.	ISBN	9781935772989.	^	a	b	Renesas	official:	Porting	guide	from	78K0R/FC3	to	RL78/F14.	Renesas	Electronics.	^	"Renesas	Electronics	Introduces	the	New	RL78	Microcontroller	Family	to	Deliver	Solutions	for	Next-Generation	8-/16-bit
Embedded	Applications".	Renesas	Electronics.	^	Hausmann,	G.;	Gebing,	E.	(1997).	"The	realisation	of	specific	automotive	applications	with	"Full"	CAN	functionality	at	"Basic"	CAN	cost	on	highly	integrated	8-Bit	microcontroller	of	NEC's	78K/0	family"	(PDF).	4th	International	CAN	Conference,	ICC.	97:	4-02–11.	^	a	b	c	Renesas	official:	78K/0	Series
for	Instructions.	Renesas	Electronics.	^	Renesas	official:	UPD78054,78054Y	Subseries	User's	Manual.	Renesas	Electronics.	^	"NEC	launches	14	new	8-bit	MCUs	for	automotive	dashboard	applications	|	EE	Times".	EETimes.	^	Renesas	official:	78K0/Dx2	User's	Manual:	Hardware.	Renesas	Electronics.	^	Suzuki,	Tetsuya	(2007-06-22).	Google	Translate
-	Introduction	site	of:	Cコンパイラで遊ぶ78K0Sマイコン	[Play	with	the	C	compiler	78K0S	microcomputer]	(in	Japanese).	Tokyo,	Japan:	Socym	Co,.Ltd.	ISBN	9784883375394.	^	Skorobogatov,	Sergei	(17	August	2010).	"Flash	Memory	'Bumping'	Attacks".	Cryptographic	Hardware	and	Embedded	Systems,	CHES	2010	(PDF).	Lecture	Notes	in	Computer
Science.	Vol.	6225.	Springer,	Berlin,	Heidelberg.	pp.	158–172.	doi:10.1007/978-3-642-15031-9_11.	ISBN	9783642150319.	^	a	b	c	Renesas	official:	78K/0S	Series	for	Instructions.	Renesas	Electronics.	^	Renesas	official:	"Difference	on	78K0	and	78K0S	in	8-bit	All	Flash	microcontrollers".	Renesas	Electronics	-	Knowledgebase.	28	June	2016.	^	Kim,
Dahoo;	Hida,	Itaru;	Fukuda,	Eric	S.;	Asai,	Tetsuya;	Motomura,	Masato	(November	2014).	A	Study	of	Transparent	On-chip	Instruction	Cache	for	NV	Microcontrollers.	The	Seventh	International	Conference	on	Advances	in	Circuits,	Electronics	and	Micro-electronics.	pp.	26–29.	CiteSeerX	10.1.1.676.6935.	ISBN	978-1-61208-379-7.	ISSN	2308-426X.	^	a	b
Renesas	official:	78K0R	Microcontrollers	User's	Manual:	Instructions.	Renesas	Electronics.	^	a	b	Renesas	official:	RL78	family	User's	Manual:	Software.	Renesas	Electronics.	^	a	b	c	17K	4-bit	Microcontroller	Data	Book	(1992).	NEC.	^	a	b	Renesas	official:	UPD178024	Subseries	User's	Manual.	Renesas	Electronics.	^	a	b	Renesas	official:	UPD179327
Subseries	User's	Manual.	Renesas	Electronics.	^	JPRS	Report:	Science	&	technology.	Japan.	Foreign	Broadcast	Information	Service.	1994.	p.	25.	The	78K/IV	has	upward	compatibility	regarding	the	instruction	sets	of	the	existing	78K/0,	78K/II	and	78K/III.	Major	features	of	the	78K/IV	are:	1)	linear	addressing	of	16	M	bytes,	2)	wide	operative	voltage	=
2.7-6.0	V,	3)	efficient	power	management,	4)	instruction	sets	for	C	compiler.	NEC	has	developed	the	1st	product	"puPD784026	subseries"	that	has	upward-compatible	peripheral	functions	of	the	78K/II	series.	^	Ohuchi,	Mitsurou;	Kawata,	Kazuhide;	Akiyama,	Shin-ichiro;	Imamura,	Hirohisa;	Fukushima,	Kiyoshi;	Ishizaki,	Norihiko;	Imamizu,	Jun-ichi;
Mori,	Takehiko;	Ono,	Hirohihiko;	Nakata,	Shigeru	(1994).	"16ビットシングルチップマイクロコンピュ-タ78K/4シリ-ズ	(半導体デバイス)"	[16-Bit	Single	Chip	Microcomputer	78K/IV	Series.].	NEC	Technical	Journal.	47	(3):	122–127.	^	"NEC:	News	Release	96/10/30-01".	www.nec.co.jp.	^	"Micro	Controller	(Data	Part)".	www.cpe.ku.ac.th.	^	a	b	Renesas	official:
78K/IV	Series	Instructions.	Renesas	Electronics.	^	Renesas	official:	UPD784908	Subseries	Hardware	(Preliminary).	Renesas	Electronics.	^	Lui,	Dr.	Gough	(16	August	2013).	"Salvage:	Quantum	Fireball	1280Mb	AT	Hard	Drive".	Gough's	Tech	Zone.	Phto	2.	^	a	b	Renesas	official:	UPD78148	User's	Manual.	Renesas	Electronics.	^	Renesas	official:

UPD78334	User's	Manual.	Renesas	Electronics.	^	"Software	repair	of	hard	disks	HDD	(Google	Translate)".	www.phantom.sannata.ru	(in	Russian).	4X_Pro.	^	Renesas	official:	UPD78366A	Hardware.	Renesas	Electronics.	^	a	b	Renesas	official:	UPD78234	Sub-Series	Hardware.	Renesas	Electronics.	^	a	b	Renesas	official:	87AD	Series	UPD78C18	User's
Manual.	Renesas	Electronics.	^	787012	User's	Manual	Hardware	Edition	(1994).	NEC.	^	Renesas	official:	UPD78356	Instructions.	Renesas	Electrnics.	Technical	documents	Application	note:	78K/0	Series	Basic	(I)	|	Renesas	Electronics	Application	note:	78K/0	Series	Basics(II)	|	Renesas	Electronics	Application	note:	78K/0	Series	Basic	(III)	|	Renesas
Electronics	Web	sites	78K	Family	|	Renesas	Electronics	78K	Family	Software	&	Tools	|	Renesas	Electronics	CPU	of	the	Day:	NEC	78C11	Sample	and	the	78K	family	|	The	CPU	Shack	MUseum	TESSERA	TECHNOLOGY,	Inc.	Retrieved	from	"	3	The	following	pages	link	to	78K	External	tools	(link	count	transclusion	count	sorted	list)	·	See	help	page	for
transcluding	these	entries	Showing	50	items.	View	(previous	50	|	next	50)	(20	|	50	|	100	|	250	|	500)Intel	80186	(links	|	edit)	Motorola	68HC11	(links	|	edit)	Microcontroller	(links	|	edit)	PowerPC	(links	|	edit)	Playdia	(links	|	edit)	Zilog	Z80	(links	|	edit)	Intel	MCS-51	(links	|	edit)	Intel	MCS-48	(links	|	edit)	ARM	architecture	family	(links	|	edit)	AVR
microcontrollers	(links	|	edit)	SuperH	(links	|	edit)	H8	Family	(links	|	edit)	PIC	microcontrollers	(links	|	edit)	TI	MSP430	(links	|	edit)	In-circuit	emulation	(links	|	edit)	Packard	Bell	(links	|	edit)	Renesas	Electronics	(links	|	edit)	NEC	(links	|	edit)	NEC	V20	(links	|	edit)	JTAG	(links	|	edit)	COP8	(links	|	edit)	CompactRISC	(links	|	edit)	Zilog	eZ80	(links	|
edit)	AMD	Am29000	(links	|	edit)	Walter	Tenney	Carleton	(links	|	edit)	Green	Rockets	Tokatsu	(links	|	edit)	MPC5xx	(links	|	edit)	Zilog	Z8	(links	|	edit)	Sharp	NEC	Display	Solutions	(links	|	edit)	ARM7	(links	|	edit)	Kunihiko	Iwadare	(links	|	edit)	Zenith	Data	Systems	(links	|	edit)	Infineon	TriCore	(links	|	edit)	In-system	programming	(links	|	edit)	NEC
μPD7720	(links	|	edit)	M32R	(links	|	edit)	V850	(links	|	edit)	FR-V	(microprocessor)	(links	|	edit)	NEC	V25	(links	|	edit)	R8C	(links	|	edit)	NEC	Software	Solutions	(links	|	edit)	NEC	Supertower	(links	|	edit)	NEC	Cup	(links	|	edit)	Comparison	of	operating	system	kernels	(links	|	edit)	NEC	Cup	(China)	(links	|	edit)	NEC	Shun-Ei	(links	|	edit)	Atmel	ARM-
based	processors	(links	|	edit)	ARM9	(links	|	edit)	Cypress	PSoC	(links	|	edit)	Tadahiro	Sekimoto	(links	|	edit)	View	(previous	50	|	next	50)	(20	|	50	|	100	|	250	|	500)	Retrieved	from	"	WhatLinksHere/78K"	Microcontroller	board	Arduino	UnoArduino	Uno	R3	SMD	board	with	ATmega328P	MCU	in	SMD
packageDeveloperarduino.ccManufacturerManyTypeSingle-board	microcontroller[1]AvailabilityUno	R4	webpageOperating	systemNone,	with	bootloader	(default),	FreeRTOSCPU	Atmel	AVR	(8-bit)	ARM	Cortex-M0+	(32-bit)	ARM	Cortex-M3	(32-bit)	Intel	Quark	(x86)	(32-bit)	MemorySRAMStorageFlash,	EEPROMWebsitearduino.cc	The	Arduino	Uno	is	a
series	of	open-source	microcontroller	board	based	on	a	diverse	range	of	microcontrollers	(MCU).	It	was	initially	developed	and	released	by	Arduino	company	in	2010.[2][3]	The	microcontroller	board	is	equipped	with	sets	of	digital	and	analog	input/output	(I/O)	pins	that	may	be	interfaced	to	various	expansion	boards	(shields)	and	other	circuits.[1]	The
board	has	14	digital	I/O	pins	(six	capable	of	PWM	output),	6	analog	I/O	pins,	and	is	programmable	with	the	Arduino	IDE	(Integrated	Development	Environment),	via	a	type	B	USB	cable.[4]	It	can	be	powered	by	a	USB	cable	or	a	barrel	connector	that	accepts	voltages	between	7	and	20	volts,	such	as	a	rectangular	9-volt	battery.	It	has	the	same
microcontroller	as	the	Arduino	Nano	board,	and	the	same	headers	as	the	Leonardo	board.[5][6]	The	hardware	reference	design	is	distributed	under	a	Creative	Commons	Attribution	Share-Alike	2.5	license	and	is	available	on	the	Arduino	website.	Layout	and	production	files	for	some	versions	of	the	hardware	are	also	available.	The	word	"uno"	means
"one"	in	Italian	and	was	chosen	to	mark	a	major	redesign	of	the	Arduino	hardware	and	software.[7]	The	Uno	board	was	the	successor	of	the	Duemilanove	release	and	was	the	9th	version	in	a	series	of	USB-based	Arduino	boards.[8]	Version	1.0	of	the	Arduino	IDE	for	the	Arduino	Uno	board	has	now	evolved	to	newer	releases.[4]	The	ATmega328	on	the
board	comes	preprogrammed	with	a	bootloader	that	allows	uploading	new	code	to	it	without	the	use	of	an	external	hardware	programmer.[3]	While	the	Uno	communicates	using	the	original	STK500	protocol,[1]	it	differs	from	all	preceding	boards	in	that	it	does	not	use	a	FTDI	USB-to-UART	serial	chip.	Instead,	it	uses	the	Atmega16U2	(Atmega8U2	up
to	version	R2)	programmed	as	a	USB-to-serial	converter.[9]	Arduino	RS232	Serial	board	-	a	predecessor	with	ATmega8	MCU	The	Arduino	project	started	at	the	Interaction	Design	Institute	Ivrea	(IDII)	in	Ivrea,	Italy.	At	that	time,	the	students	used	a	BASIC	Stamp	microcontroller,	at	a	cost	that	was	a	considerable	expense	for	many	students.	In	2003,
Hernando	Barragán	created	the	development	platform	Wiring	as	a	Master's	thesis	project	at	IDII,	under	the	supervision	of	Massimo	Banzi	and	Casey	Reas,	who	are	known	for	work	on	the	Processing	language.	The	project	goal	was	to	create	simple,	low-cost	tools	for	creating	digital	projects	by	non-engineers.	The	Wiring	platform	consisted	of	a	printed
circuit	board	(PCB)	with	an	ATmega168	microcontroller,	an	IDE	based	on	Processing,	and	library	functions	to	easily	program	the	microcontroller.[10]	In	2003,	Massimo	Banzi,	with	David	Mellis,	another	IDII	student,	and	David	Cuartielles,	added	support	for	the	cheaper	ATmega8	microcontroller	to	Wiring.	But	instead	of	continuing	the	work	on	Wiring,
they	forked	the	project	and	renamed	it	Arduino.	Early	Arduino	boards	used	the	FTDI	USB-to-UART	serial	chip	and	an	ATmega168.[10]	The	Uno	differed	from	all	preceding	boards	by	featuring	the	ATmega328P	microcontroller	and	an	ATmega16U2	(Atmega8U2	up	to	version	R2)	programmed	as	a	USB-to-serial	converter.	In	June	2023,	Arduino	released
two	new	flavors	of	the	Uno;	R4	Minima	and	R4	Wifi.	These	mark	a	departure	from	previous	boards	as	they	use	Renesas	RA4M1	ARM	Cortex	M4	microcontroller,	and	the	R4	Wifi	a	Espressif	ESP32-S3-MINI	co-processor.	These	versions	are	form	factor,	pin	and	power	compatible	with	version	R1	to	R3,	so	should	be	largely	be	able	to	be	drop	in
replacements.[11]	Arduino	Uno	R3	board	with	AVR-based	ATmega328P	MCU	in	DIP-28	package	Microcontroller	(MCU):[12]	IC:	Microchip	ATmega328P	(8-bit	AVR	core)	Clock	Speed:	16	MHz	on	Uno	board,	though	IC	is	capable	of	20	MHz	maximum	at	5	Volts	Flash	memory:	32	KB,	of	which	0.5	KB	used	by	the	bootloader	SRAM:	2	KB	EEPROM:	1	KB
USART	peripherals:	1	(Arduino	software	default	configures	USART	as	a	8N1	UART)	SPI	peripherals:	1	I²C	peripherals:	1	Operating	Voltage:	5	Volts	Digital	I/O	Pins:	14	PWM	Pins:	6	(Pin	#	3,	5,	6,	9,	10	and	11)[13]	Analog	Input	Pins:	6	DC	Current	per	I/O	Pin:	20	mA	DC	Current	for	3.3V	Pin:	50	mA	Size:	68.6	mm	x	53.4	mm	Weight:	25	g	ICSP	Header:
Yes	Power	Sources:	USB	connector.	USB	bus	specification	has	a	voltage	range	of	4.75	to	5.25	volts.	The	official	Uno	boards	have	a	USB-B	connector,	but	3rd	party	boards	may	have	a	miniUSB	/	microUSB	/	USB-C	connector.	5.5mm/2.1mm	barrel	jack	connector.	Official	Uno	boards	support	6	to	20	volts,	though	7	to	12	volts	is	recommended.	The
maximum	voltage	for	3rd	party	Uno	boards	varies	between	board	manufactures	because	various	voltage	regulators	are	used,	each	having	a	different	maximum	input	rating.	Power	into	this	connector	is	routed	through	a	series	diode	before	connecting	to	VIN	to	protect	against	accidental	reverse	voltage	situations.	VIN	pin	on	shield	header.	It	has	a
similar	voltage	range	of	the	barrel	jack.	Since	this	pin	doesn't	have	reverse	voltage	protection,	power	can	be	injected	or	pulled	from	this	pin.	When	supplying	power	into	VIN	pin,	an	external	series	diode	is	required	in	case	barrel	jack	is	used.	When	board	is	powered	by	barrel	jack,	power	can	be	pulled	out	of	this	pin.[14]	Arduino	Uno	R4	WiFi	with
ARM-based	R7FA4M1AB	MCU	in	64pin	SMD	package	Two	Uno	R4	boards	are	available:	Uno	R4	Minima	and	Uno	R4	WiFi.	The	latter	has	a	WiFi	coprocessor	and	LED	matrix,	but	the	Minima	doesn't.	Common	features	on	both	Uno	R4	Minima[15]	and	Uno	R4	WiFi[16]	boards:	Microcontroller	(MCU):[17]	IC:	Renesas	R7FA4M1AB	(32-bit	ARM	Cortex-
M4F	core	with	single-precision	FPU)	Clock	Speed:	48	MHz	Flash	memory:	256	KB	+	bootrom	SRAM:	32	KB	(16	KB	ECC)	(16	KB	parity)	EEPROM:	8	KB	(data	flash)	USART	peripherals:	4	SPI	peripherals:	2	I²C	peripherals:	2	Operating	Voltage:	5	Volts	USB-C	connector.	Barrel	jack	connector	and	VIN	pin	on	shield	header	supports	up	to	a	maximum	of
24	volts	DC.	Additional	features	only	available	on	the	Uno	R4	Minima	board:[15]	SWD	programming	connector.	This	is	a	10-pin	5x2	1.27mm	header	for	connecting	the	microcontroller	(R7FA4M1AB)	to	an	external	SWD	(serial	wire	debug)	programming	/	debugging	device.	Additional	features	only	available	on	the	Uno	R4	WiFi	board:[16]	WiFi
coprocessor	-	240	MHz	Espressif	ESP32-S3-MINI	(IEEE802.11	b/g/n	WiFi	and	Bluetooth	5	LE)	and	a	6-pin	3x2	2.54mm	header	for	external	programming.	12x8	LED	matrix	-	it	is	driven	by	11	GPIO	pins	using	a	charlieplexing	scheme.	Qwiic	I²C	connector.	This	4-pin	1.00mm	JST	SH	connector	provides	external	connection	to	a	3.3	volt	I²C	bus.	Don't
attach	5	volt	I²C	devices	directly	to	this	connector.[18]	RTC	battery	header	pin	(VRTC).	This	pin	connects	an	external	battery	to	the	RTC	(real-time	clock)	inside	the	microcontroller	(R7FA4M1AB)	to	keep	clock	running	when	board	is	powered	down.	Connect	this	pin	to	positive	side	of	1.6	to	3.6	volt	battery	and	negative	side	of	battery	to	ground	header
pin	(GND),	such	as	a	3	volt	lithium	coin	battery.[17]	Remote-Off	header	pin	(OFF).	This	pin	disables	the	5	volt	buck	switching	voltage	regulator	(SL854102)	when	powered	by	the	barrel	jack	or	VIN	header	pin.	Connect	this	pin	to	ground	header	pin	(GND)	to	disable	this	voltage	regulator.	Header	pinout	of	the	Arduino	Uno	board	LED:	There	is	a	built-in
LED	driven	by	digital	pin	13.	When	the	pin	is	high	value,	the	LED	is	on,	when	the	pin	is	low,	it	is	off.	VIN:	The	input	voltage	to	the	Arduino/Genuino	board	when	it	is	using	an	external	power	source	(as	opposed	to	5	volts	from	the	USB	connection	or	other	regulated	power	source).	You	can	supply	voltage	through	this	pin,	or,	if	supplying	voltage	via	the
power	jack,	access	it	through	this	pin.	5V:	This	pin	outputs	a	regulated	5V	from	the	regulator	on	the	board.	The	board	can	be	supplied	with	power	either	from	the	DC	power	jack	(7	-	20V),	the	USB	connector	(5V),	or	the	VIN	pin	of	the	board	(7-20V).	Supplying	voltage	via	the	5V	or	3.3V	pins	bypasses	the	regulator,	and	can	damage	the	board.	3V3:	A
3.3	volt	supply	generated	by	the	on-board	regulator.	Maximum	current	draw	is	50	mA.	GND:	Ground	pins.	IOREF:	This	pin	on	the	Arduino/Genuino	board	provides	the	voltage	reference	with	which	the	microcontroller	operates.	A	properly	configured	shield	can	read	the	IOREF	pin	voltage	and	select	the	appropriate	power	source,	or	enable	voltage
translators	on	the	outputs	to	work	with	the	5V	or	3.3V.	Reset:	Typically	used	to	add	a	reset	button	to	shields	that	block	the	one	on	the	board.[9]	Each	of	the	14	digital	pins	and	6	analog	pins	on	the	Uno	can	be	used	as	an	input	or	output,	under	software	control	(using	pinMode(),	digitalWrite(),	and	digitalRead()	functions).	They	operate	at	5	volts.	Each
pin	can	provide	or	receive	20	mA	as	the	recommended	operating	condition	and	has	an	internal	pull-up	resistor	(disconnected	by	default)	of	20-50K	ohm.	A	maximum	of	40mA	must	not	be	exceeded	on	any	I/O	pin	to	avoid	permanent	damage	to	the	microcontroller.	The	Uno	has	6	analog	inputs,	labeled	A0	through	A5;	each	provides	10	bits	of	resolution
(i.e.	1024	different	values).	By	default,	they	measure	from	ground	to	5	volts,	though	it	is	possible	to	change	the	upper	end	of	the	range	using	the	AREF	pin	and	the	analogReference()	function.[9]	In	addition,	some	pins	have	specialized	functions:	Serial	/	UART:	pins	0	(RX)	and	1	(TX).	Used	to	receive	(RX)	and	transmit	(TX)	TTL	serial	data.	These	pins
are	connected	to	the	corresponding	pins	of	the	ATmega8U2	USB-to-TTL	serial	chip.	External	interrupts:	pins	2	and	3.	These	pins	can	be	configured	to	trigger	an	interrupt	on	a	low	value,	a	rising	or	falling	edge,	or	a	change	in	value.	PWM	(pulse-width	modulation):	pins	3,	5,	6,	9,	10,	and	11.	Can	provide	8-bit	PWM	output	with	the	analogWrite()
function.	SPI	(Serial	Peripheral	Interface):	pins	10	(SS),	11	(MOSI),	12	(MISO),	and	13	(SCK).	These	pins	support	SPI	communication	using	the	SPI	library.	TWI	(two-wire	interface)	/	I²C:	pin	SDA	(A4)	and	pin	SCL	(A5).	Support	TWI	communication	using	the	Wire	library.	AREF	(analog	reference):	Reference	voltage	for	the	analog	inputs.[9]	The
Arduino/Genuino	Uno	has	a	number	of	facilities	for	communicating	with	a	computer,	another	Arduino/Genuino	board,	or	other	microcontrollers.	The	ATmega328	provides	UART	TTL	(5V)	serial	communication,	which	is	available	on	digital	pins	0	(RX)	and	1	(TX).	An	ATmega16U2	on	the	board	channels	this	serial	communication	over	USB	and	appears
as	a	virtual	com	port	to	software	on	the	computer.	The	16U2	firmware	uses	the	standard	USB	COM	drivers,	and	no	external	driver	is	needed.	However,	on	Windows,	a	.inf	file	is	required.	Arduino	Software	(IDE)	includes	a	serial	monitor	which	allows	simple	textual	data	to	be	sent	to	and	from	the	board.	The	RX	and	TX	LEDs	on	the	board	will	flash
when	data	is	being	transmitted	via	the	USB-to-serial	chip	and	USB	connection	to	the	computer	(but	not	for	serial	communication	on	pins	0	and	1).	A	SoftwareSerial	library	allows	serial	communication	on	any	of	the	Uno's	digital	pins.[9]	Rather	than	requiring	a	physical	press	of	the	reset	button	before	an	upload,	the	Arduino/Genuino	Uno	board	is
designed	in	a	way	that	allows	it	to	be	reset	by	the	software	running	on	a	connected	computer.	One	of	the	hardware	flow	control	lines	(DTR)	of	the	ATmega8U2/16U2	is	connected	to	the	reset	line	of	the	ATmega328	via	a	100	nanofarad	capacitor.	When	this	line	is	asserted	(taken	low),	the	reset	line	drops	long	enough	to	reset	the	chip.[9]	This	setup	has
other	implications.	When	the	Uno	is	connected	to	a	computer	running	Mac	OS	X	or	Linux,	it	resets	each	time	a	connection	is	made	to	it	from	software	(via	USB).	For	the	following	half-second	or	so,	the	bootloader	is	running	on	the	Uno.	While	it	is	programmed	to	ignore	malformed	data	(i.e.	anything	besides	an	upload	of	new	code),	it	will	intercept	the
first	few	bytes	of	data	sent	to	the	board	after	a	connection	is	opened.[9]	The	following	table	compares	official	Arduino	boards,	and	has	a	similar	layout	as	a	table	in	the	Arduino	Nano	article.	The	table	is	split	with	a	dark	bar	into	two	high-level	microcontroller	groups:	8-bit	AVR	cores	(upper	group),	and	32-bit	ARM	Cortex-M	cores	(lower	group).	Though
3rd-party	boards	have	similar	board	names	it	doesn't	automatically	mean	they	are	100%	identical	to	official	Arduino	boards.	3rd-party	boards	often	have	a	different	voltage	regulator	/	different	USB-to-UART	chip	/	different	color	solder	mask,	and	some	have	a	different	USB	connector	or	additional	features,	too.	[19]	BoardName&	Part#	BoardSizeGroup
BoardCommun-ication	MCUPart#&	Pins	MCUI/OVoltage	MCUCore	MCUClock	MCUFlash	MCUSRAM	MCUEEPROM	MCUUSART&	UART	MCUSPI	MCUI²C	MCUOther	BusPeripherals	MCU	Timers32/24/16/8/WD/RT/RC	MCUADC&	DAC	MCUEngines	Uno	R3,[20]A000066,[9]Uno	R3	SMD,[21]A000073[22]	Uno	USB-B	ATmega328P,[12]28	pin	DIP,32
pin	SMD	5V(1.8-5.5V)	8bit	AVR	16	MHz*	32	KB	2	KB	1	KB	1,	0	1	1	None	0,	0,	1,	2,WD	10bit,None	None	Uno	WiFi	R2,[23]ABX00021[24]	Uno	USB-B,WiFi,Bluetooth	ATmega4809,[25]48	pin	5V(1.8-5.5V)	8bit	AVR	16	MHz*	48	KB	6	KB	0.25	KB	4,	0	1	1	None	0,	0,	5,	0,WD,	RT	10bit,None	None	Leonardo,[26]A000057[27]	Uno	USB-Micro-B	ATmega32U4,
[28]44	pin	5V(2.7-5.5V)	8bit	AVR	16	MHz	32	KB	2.5	KB	1	KB	1,	0	1	1	USB-FS	0,	0,	2,	1,WD,	10bit	10bit,None	None	Mega	2560	R3,[29]A000067[30]	Mega	USB-B	ATmega2560,[31]100	pin	5V(4.5-5.5V)	8bit	AVR	16	MHz	256	KB	8	KB	4	KB	4,	0	1	1	None	0,	0,	4,	2,WD	10bit,None	None	Uno	R4	Minima,[15]ABX00080,[32]Uno	R4	WiFi,[16]ABX00087,[33]
Uno	USB-C,WiFi*	R7FA4M1AB,[17]64	pin	5V(1.6-5.5V)	32bit	ARMCortex-M4F(FPU)	48	MHz	256	KB+	bootrom	32	KB(ECC)(parity)	None+	8	KBdata	flash	4,	0	2	2	USB-FS,CAN-A/B	2,	0,	8,	0,WD,	RC,24bit	SysTick	14bit,12bit	DMA	x4,CRC,	RNG,Crypto,	Touch,LCD	Zero,[34]ABX00003[35]	Uno	USB-Micro-Bx2	ATSAMD21G18,[36]48	pin	3.3V(1.62-
3.63V)	32bit	ARMCortex-M0+	48	MHz	256	KB	32	KB	None	6,	0	None	None	USB-FS,I²S	0,	4,	5,	0,WD,	RC,24bit	SysTick	12bit,10bit	DMA	x12,CRC32,	Touch	Due,[37]A000062[38]	Mega	USB-Micro-Bx2	ATSAM3X8E,[39]144	pin	3.3V(1.62-3.6V)	32bit	ARMCortex-M3	84	MHz	512	KB+	bootrom	96	KB	None	4,	1	1	2	USB-HS,CAN-A/B	x2,I²S,	SD	3,	0,	8,
0,WD,	RT,	RC,24bit	SysTick	12bit,12bit	x2	DMA	x8,RNG	GIGA	R1	WiFi,[40]ABX00063[41]	Mega	USB-C,USB-A,WiFi,Bluetooth	STM32H747XI,[42]240	pin	3.3V(1.62-3.6V)	32bit	ARMCortex-M7FCortex-M4F(dual	core)(FPU)	480	MHz(M7F),240	MHz(M4F)	2048	KB+	bootrom	1056	KB(ECC)	None	4,	5	6	4	USB-HS	&	FS,CAN-A/B/FD	x2,I²S	x4,	SD
x2,S/PDIF	x4,	CEC,SWP,	QSPI	2,	0,	18,	0,WD,	RC,24bit	SysTick	16bit	x3,12bit	x2	DMA	x4,CRC,	RNG,Graphics	Arduino	Leonardo	board	with	ATmega32U4	MCU	Arduino	Due	board	with	ATSAM3X8E	MCU	Table	notes	Board	Size	Group	column	-	Simplified	board	dimension	size	grouping:	Uno	means	similar	size	as	Arduino	Uno	R3	and	Duemilanove
(predecessor)	boards,	Mega	means	similar	size	as	the	longer	Arduino	Mega	2560	R3	and	Mega	(predecessor)	boards.	This	table	has	a	similar	layout	as	a	table	in	the	Arduino	Nano	article.	MCU	Part#	/	Pins	column	-	MCU	means	microcontroller.	All	MCU	information	in	this	table	was	sourced	from	official	datasheets	in	this	column.	The	pin	count	is
useful	to	determine	the	quantity	of	internal	MCU	features	that	are	available.	All	MCU	hardware	features	may	not	be	available	at	the	shield	header	pins	because	the	MCU	IC	package	has	more	pins	than	the	shield	header	pins	on	the	Arduino	board	(*).	MCU	I/O	Voltage	column	-	Microcontrollers	on	official	Arduino	boards	are	powered	at	a	fixed	voltage
of	either	3.3	or	5	volts,	though	some	3rd	party	boards	have	a	voltage	selection	switch.	The	voltage	rating	of	the	microcontroller	is	stated	inside	parenthesis,	though	Arduino	boards	don't	support	this	full	range.	MCU	Clock	column	-	MHz	means	106	Hertz.	The	ATmega328P	MPU	and	ATmega4809	MCU	are	rated	for	a	maximum	of	20	MHz,	but	the	Uno
R3	and	Uno	WiFi	R2	boards	both	operate	at	16	MHz.	The	following	Arduino	boards	have	a	32.768	kHz	crystal	too:	Uno	WiFi	R2,	Zero,	Due,	GIGA	R1	WiFi.	The	Uno	R4	Minima	has	SMD	footprints	for	a	32.768KHz	crystal	and	two	capacitors,	but	aren't	installed.	MCU	memory	columns	-	KB	means	1024	bytes,	MB	means	10242	bytes.	The	R7FA4M1AB
MCU	(Uno	R4	boards)	contains	data	flash	memory	instead	of	EEPROM	memory.	MCU	SRAM	column	-	SRAM	size	doesn't	include	caches	or	peripheral	buffers.	ECC	means	SRAM	has	error	correction	code	checking,	Par	means	SRAM	has	parity	checking.	MCU	USART/UART	column	-	USARTs	are	software	configurable	to	be	a:	UART	/	SPI	/	other
peripherals	(varies	across	MCUs).	MCU	Other	Bus	Peripherals	column	-	For	USB	bus,	"FS"	means	Full	Speed	(12	Mbps	max),	"HS"	means	High	Speed	(480	Mbps	max).	For	CAN	bus,	"A"	means	CAN	2.0A,	"B"	means	CAN	2.0B,	"FD"	means	CAN-FD.	Some	buses	require	additional	external	circuitry	to	operate.	MCU	Timers	column	-	The	numbers	in	this
column	are	the	total	number	of	each	timer	bit	width,	for	example,	the	ATmega328P	has	one	16-bit	timer	and	two	8-bit	timers.	"WD"	means	Watchdog	timer,	"RT"	means	Real	Time	Counter/Timer,	"RC"	means	Real	Time	Clock	(sec/min/hr).	The	24-bit	SysTick	timer(s)	inside	the	ARM	cores	aren't	included	in	the	24-bit	total	in	this	column.	PWM	features
are	not	documented	in	this	table.	AVR	microcontrollers	Atmel	AVR	instruction	set	In-system	programming	^	a	b	c	"Arduino	UNO	for	beginners	-	Projects,	Programming	and	Parts".	makerspaces.com.	7	February	2017.	Retrieved	4	February	2018.	^	"Arduino	FAQ".	5	April	2013.	Archived	from	the	original	on	27	November	2020.	Retrieved	21	February
2018.	^	a	b	"What	is	Arduino?".	learn.sparkfun.com.	Retrieved	4	February	2018.	^	a	b	"Introduction	to	Arduino"	(PDF).	princeton.edu.	Archived	from	the	original	(PDF)	on	3	April	2018.	Retrieved	4	February	2018.	^	"Arduino	Nano".	Arduino	Official	Store.	Retrieved	2022-12-07.	^	"Arduino	Leonardo	with	Headers".	Archived	from	the	original	on	2021-
05-15.	^	"Previous	IDE	Releases".	Retrieved	2023-02-08.	^	"Arduino	Older	Boards".	Retrieved	2023-02-08.	^	a	b	c	d	e	f	g	h	"Board;	Uno	R3;	Store".	Arduino.	^	a	b	Hernando	Barragán	(2016-01-01).	"The	Untold	History	of	Arduino".	arduinohistory.github.io.	Retrieved	2016-03-06.	^	"Introducing	the	Arduino	UNO	R4!	-	News	-	SparkFun	Electronics".
www.sparkfun.com.	Retrieved	2023-08-07.	^	a	b	"MCU;	ATmega328P;	Docs".	Microchip.	Archived	from	the	original	on	March	27,	2023.	^	"What	is	Arduino	UNO?	A	Getting	Started	Guide".	www.rs-online.com.	Retrieved	2021-08-04.	^	"Using	Vin	pin	on	Arduino	with	a	shield".	Electrical	Engineering	Stack	Exchange.	Retrieved	2024-01-20.	^	a	b	c
"Board;	Uno	R4	Minima;	Docs".	Arduino.	Archived	from	the	original	on	June	27,	2023.	^	a	b	c	"Board;	Uno	R4	WiFi;	Docs".	Arduino.	Archived	from	the	original	on	June	27,	2023.	^	a	b	c	"MCU;	R7FA4M1AB;	Docs".	Renesas.	Archived	from	the	original	on	May	8,	2023.	^	"Qwiic	I2C	Connect	System".	SparkFun.	Archived	from	the	original	on	September
7,	2023.	^	"Seeeduino	v4.3	(UNO	ATmega328P)".	Seeed	Studio.	Archived	from	the	original	on	November	22,	2023.	^	"Board;	Uno	R3;	Docs".	Arduino.	Archived	from	the	original	on	May	17,	2023.	^	"Board;	Uno	R3	SMD;	Docs".	Arduino.	Archived	from	the	original	on	May	8,	2023.	^	"Board;	Uno	R3	SMD;	Store".	Arduino.	^	"Board;	UNO	WiFi	R2;
Docs".	Arduino.	Archived	from	the	original	on	March	28,	2023.	^	"Board;	Uno	WiFi	R2;	Store".	Arduino.	^	"MCU;	ATmega4809;	Docs".	Microchip.	Archived	from	the	original	on	December	6,	2022.	^	"Board;	Leonardo;	Docs".	Arduino.	Archived	from	the	original	on	April	5,	2023.	^	"Board;	Leonardo;	Store".	Arduino.	^	"MCU;	ATmega32U4;	Docs".
Microchip.	Archived	from	the	original	on	April	5,	2023.	^	"Board;	Mega	2560	R3;	Docs".	Arduino.	Archived	from	the	original	on	April	21,	2023.	^	"Board;	Mega	2560	R3;	Store".	Arduino.	^	"MCU;	ATmeg2560;	Docs".	Microchip.	Archived	from	the	original	on	March	1,	2023.	^	"Board;	Uno	R4	Minima;	Store".	Arduino.	^	"Board;	Uno	R4	WiFi;	Store".
Arduino.	^	"Board;	Zero;	Docs".	Arduino.	Archived	from	the	original	on	May	8,	2023.	^	"Board;	Zero;	Store".	Arduino.	^	"MCU;	ATSAMD21G18;	Docs".	Microchip.	Archived	from	the	original	on	February	1,	2023.	^	"Board;	Due;	Docs".	Arduino.	Archived	from	the	original	on	May	8,	2023.	^	"Board;	Due;	Store".	Arduino.	^	"MCU;	ATSAM3X8E;	Docs".
Microchip.	Archived	from	the	original	on	October	26,	2022.	^	"Board;	GIGA	R1	WiFi;	Docs".	Arduino.	Archived	from	the	original	on	May	14,	2023.	^	"Board;	GIGA	R1	WiFi;	Store".	Arduino.	^	"MCU;	STM32H747XI;	Docs".	ST.	Archived	from	the	original	on	May	11,	2023.	Attribution:		This	article	incorporates	text	available	under	the	CC	BY-SA	3.0
license.	Main	article:	List	of	books	about	Arduino	Wikimedia	Commons	has	media	related	to	Arduino	UNO.	Arduino	Uno	official	webpage	What's	the	difference	between	UNO	R3	and	UNO	R4	boards?	Comparison	of	Various	Arduino	Boards	Programming	Cheat	Sheets	Sheet1,	Sheet2	Pinout	Diagrams	Arduino	Uno	Board,	ATmega328	DIP	IC,
ATmega328	SMD	IC	Electronic	Schematics	Uno	"DIP"	R3,	Uno	SMD	R3,	Uno	R4	Minima,	Uno	R4	WiFi	Differences	Between	Uno	Board	Revisions	(R1/R2/R3)	Mechanical	Drawings	Dimensions	and	Hole	Patterns	Dimensions,	Hole	Patterns,	Header	Locations	and	PCB	Templates	Retrieved	from	"	Arduino	Uno	is	a	popular	microcontroller	development
board	based	on	8-bit	ATmega328P	microcontroller.	Along	with	ATmega328P	MCU	IC,	it	consists	of	other	components	such	as	crystal	oscillator,	serial	communication,	voltage	regulator,	etc.	to	support	the	microcontroller.	This	article	explores	the	Arduino	UNO	pin	diagram	in	detail	along	with	basics	on	how	to	use	this	board	and	upload	your	first	code.	
Please	note	that	this	article	discusses	the	popular	Arduino	UNO	R3	development	board	and	not	the	latest	Arduino	UNO	R4	board	which	was	launched	recently.	If	you	are	new	you	can	also	check	out	our	article	on	Arduino	UNO	R3	vs	Arduino	Arduino	UNO	R4	to	understand	the	differences	between	these	two	boards.		Arduino	Uno	Pinout	Configuration
Pin	Category	Pin	Name	Pin	Description	Power	Vin,	3.3V,	5V,	GND	Vin:	Input	voltage	to	Arduino	when	using	an	external	power	source.	5V:	Regulated	power	supply	used	to	power	microcontroller	and	other	components	on	the	board.	3.3V:	3.3V	supply	generated	by	on-board	voltage	regulator.	Maximum	current	draw	is	50mA.	GND:	ground	pins.	Reset
Reset	Resets	the	microcontroller.	Analog	Pins	A0	–	A5	Used	to	provide	analog	input	in	the	range	of	0-5V	Input/Output	Pins	Digital	Pins	0	-	13	Can	be	used	as	input	or	output	pins.	Serial	0(Rx),	1(Tx)	Used	to	receive	and	transmit	TTL	serial	data.	External	Interrupts	2,	3	To	trigger	an	interrupt.	PWM	3,	5,	6,	9,	11	Provides	8-bit	PWM	output.	SPI	10	(SS),
11	(MOSI),	12	(MISO)	and	13	(SCK)	Used	for	SPI	communication.	Inbuilt	LED	13	To	turn	on	the	inbuilt	LED.	TWI	A4	(SDA),	A5	(SCA)	Used	for	TWI	communication.	AREF	AREF	To	provide	reference	voltage	for	input	voltage.	Arduino	Uno	Technical	Specifications	Microcontroller	ATmega328P	–	8	bit	AVR	family	microcontroller	Operating	Voltage	5V
Recommended	Input	Voltage	7-12V	Input	Voltage	Limits	6-20V	Analog	Input	Pins	6	(A0	–	A5)	Digital	I/O	Pins	14	(Out	of	which	6	provide	PWM	output)	DC	Current	on	I/O	Pins	40	mA	DC	Current	on	3.3V	Pin	50	mA	Flash	Memory	32	KB	(0.5	KB	is	used	for	Bootloader)	SRAM	2	KB	EEPROM	1	KB	Frequency	(Clock	Speed)	16	MHz	Note:	Complete
technical	information	can	be	found	in	the	Arduino	UNO	Datasheet,	linked	at	the	bottom	of	this	page.	Other	Arduino	Boards	Arduino	Nano,	Arduino	Pro	Mini,	Arduino	Mega,	Arduino	Due,	Arduino	MKR1000	Wi-Fi	Board,	Arduino	Leonardo	Overview	Arduino	Uno	is	a	microcontroller	board	based	on	8-bit	ATmega328P	microcontroller.	Along	with
ATmega328P,	it	consists	other	components	such	as	crystal	oscillator,	serial	communication,	voltage	regulator,	etc.	to	support	the	microcontroller.	Arduino	Uno	has	14	digital	input/output	pins	(out	of	which	6	can	be	used	as	PWM	outputs),	6	analog	input	pins,	a	USB	connection,	A	Power	barrel	jack,	an	ICSP	header	and	a	reset	button.	Arduino	UNO	Pin
Layout	Overview	The	Arduino	UNO	pin	layout	is	organized	into	distinct	categories,	including	Power	Pins,	Digital	Pins,	Analog	Pins,	and	Special	Function	Pins.	Each	category	plays	a	specific	role	in	enabling	the	functionality	of	the	board.	The	Arduino	UNO	pinouts	available	under	each	category	is	shown	in	the	image	below		Now,	lets	understand	the
function	of	each	pin	under	in	detail	under	different	category		Power	Pins	Power	pins	are	essential	for	operating	the	board	and	connected	devices.	The	main	pins	include:	VIN:	Accepts	external	power	sources	(7-12V).	5V	and	3.3V:	Provide	regulated	voltage	outputs	for	peripherals.	GND	(Ground):	Completes	the	circuit.	IOREF:	Supplies	a	voltage
reference	for	I/O	pins.	Tip:	Always	verify	the	voltage	compatibility	of	connected	components	to	avoid	damage.	Digital	Pins	(0-13)	The	Arduino	UNO	has	14	digital	pins	that	can	function	as	inputs	or	outputs.	Pins	0	(RX)	and	1	(TX):	Reserved	for	serial	communication.	Pins	2-13:	General-purpose	I/O	pins.	PWM	Pins	(3,	5,	6,	9,	10,	11):	Support	Pulse	Width
Modulation,	ideal	for	applications	like	controlling	motors	and	dimming	LEDs.	Use	functions	like	pinMode(),	digitalWrite(),	and	digitalRead()	to	interact	with	these	pins.	Analog	Pins	(A0-A5)	Analog	pins	allow	reading	continuous	voltage	signals,	often	from	sensors.	Resolution:	10-bit	(0	to	1023	range).	Flexibility:	Can	also	function	as	digital	I/O	pins	when
required.	Special	Function	Pins	Reset	Pin:	Resets	the	board	when	triggered.	AREF:	Used	to	provide	an	external	voltage	reference	for	analog	inputs.	Serial	Pins	(RX/TX):	Facilitate	UART	communication	for	serial	data	exchange.	ICSP	Header	The	ICSP	(In-Circuit	Serial	Programming)	header	allows	direct	programming	of	the	microcontroller	or
connecting	additional	peripherals.	MISO	(Master-In-Slave-Out):	Receives	data	from	peripherals.	MOSI	(Master-Out-Slave-In):	Sends	data	to	peripherals.	SCK	(Serial	Clock):	Synchronizes	data	transfer.	Communication	Pins	I2C	Pins:	SCL	(Clock	line)	and	SDA	(Data	line)	are	located	on	A5	and	A4,	respectively.	SPI	Pins:	Share	functionality	with	the	ICSP
header	(MISO,	MOSI,	and	SCK).	UART	Pins:	TX	(Pin	1)	and	RX	(Pin	0)	handle	serial	communication.	Arduino	Uno	to	ATmega328	Pin	Mapping	When	ATmega328	chip	is	used	in	place	of	Arduino	Uno,	or	vice	versa,	the	image	below	shows	the	pin	mapping	between	the	two.	Software	(Arduino	IDE)	Arduino	IDE	(Integrated	Development	Environment)	is
required	to	program	the	Arduino	Uno	board.	Download	it	from	here.	Programming	Arduino	Once	arduino	IDE	is	installed	on	the	computer,	connect	the	board	with	computer	using	USB	cable.	Now	open	the	arduino	IDE	and	choose	the	correct	board	by	selecting	Tools>Boards>Arduino/Genuino	Uno,	and	choose	the	correct	Port	by	selecting	Tools>Port.
Arduino	Uno	is	programmed	using	Arduino	programming	language	based	on	Wiring.	To	get	it	started	with	Arduino	Uno	board	and	blink	the	built-in	LED,	load	the	example	code	by	selecting	Files>Examples>Basics>Blink.	Once	the	example	code	(also	shown	below)	is	loaded	into	your	IDE,	click	on	the	‘upload’	button	given	on	the	top	bar.	Once	the
upload	is	finished,	you	should	see	the	Arduino’s	built-in	LED	blinking.		Below	is	the	example	code	for	blinking:	//	the	setup	function	runs	once	when	you	press	reset	or	power	the	board	void	setup()	{	//	initialize	digital	pin	LED_BUILTIN	as	an	output.	pinMode(LED_BUILTIN,	OUTPUT);	}	//	the	loop	function	runs	over	and	over	again	forever	void	loop()	{
digitalWrite(LED_BUILTIN,	HIGH);	//	turn	the	LED	on	(HIGH	is	the	voltage	level)	delay(1000);	//	wait	for	a	second	digitalWrite(LED_BUILTIN,	LOW);	//	turn	the	LED	off	by	making	the	voltage	LOW	delay(1000);	//	wait	for	a	second	}	Applications	Prototyping	of	Electronics	Products	and	Systems	Multiple	DIY	Arduino	Projects.	Easy	to	use	for	beginner
level	DIYers	and	makers.	Projects	requiring	Multiple	I/O	interfaces	and	communications.	Commonly	Asked	Question	when	working	with	Arduino	UNO	Q1.	What	is	the	function	of	PWM	pins	on	Arduino	UNO?	PWM	pins	generate	variable	output	signals	for	tasks	like	motor	control	and	dimming	LEDs.	Q2.	Can	I	use	analog	pins	as	digital	pins?	Yes,	analog
pins	(A0-A5)	can	be	configured	as	digital	I/O	pins.	Q3.	What	is	the	role	of	the	ICSP	header?	It	allows	direct	programming	of	the	microcontroller	or	connecting	advanced	peripherals.	Q4.	What	happens	if	I	supply	more	than	5V	to	an	I/O	pin?	Excess	voltage	can	permanently	damage	the	microcontroller.	Q5.	Are	all	digital	pins	PWM-capable?	No,	only	pins
3,	5,	6,	9,	10,	and	11	support	PWM.	Q6.	How	do	I	power	the	Arduino	UNO?	You	can	use	the	USB	port,	VIN	pin,	or	DC	power	jack.	2D	Model	and	Dimensions	Share	—	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	—	remix,	transform,	and	build	upon	the	material	for	any	purpose,	even
commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	—	You	must	give	appropriate	credit	,	provide	a	link	to	the	license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	—	If	you
remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	—	You	may	not	apply	legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in
the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions	necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	Arduino	Uno	Board	Arduino	is	a	single-board
microcontroller	meant	to	make	the	application	more	accessible	which	are	interactive	objects	and	its	surroundings.	The	hardware	features	with	an	open-source	hardware	board	designed	around	an	8-bit	Atmel	AVR	microcontroller	or	a	32-bit	Atmel	ARM.	Current	models	consists	a	USB	interface,	6	analog	input	pins	and	14	digital	I/O	pins	that	allows	the
user	to	attach	various	extension	boards.	The	Arduino	Uno	board	is	a	microcontroller	based	on	the	ATmega328.	It	has	14	digital	input/output	pins	in	which	6	can	be	used	as	PWM	outputs,	a	16	MHz	ceramic	resonator,	an	ICSP	header,	a	USB	connection,	6	analog	inputs,	a	power	jack	and	a	reset	button.	This	contains	all	the	required	support	needed	for
microcontroller.	In	order	to	get	started,	they	are	simply	connected	to	a	computer	with	a	USB	cable	or	with	a	AC-to-DC	adapter	or	battery.	Arduino	Uno	Board	varies	from	all	other	boards	and	they	will	not	use	the	FTDI	USB-to-serial	driver	chip	in	them.	It	is	featured	by	the	Atmega16U2	(Atmega8U2	up	to	version	R2)	programmed	as	a	USB-to-serial
converter.	Arduino	Uno	with	Digital	Input/Output	There	are	various	types	of	Arduino	boards	in	which	many	of	them	were	third-party	compatible	versions.	The	most	official	versions	available	are	the	Arduino	Uno	R3	and	the	Arduino	Nano	V3.	Both	of	these	run	a	16MHz	Atmel	ATmega328P	8-bit	microcontroller	with	32KB	of	flash	RAM	14	digital	I/O	and
six	analogue	I/O	and	the	32KB	will	not	sound	like	as	if	running	Windows.	Arduino	projects	can	be	stand-alone	or	they	can	communicate	with	software	on	running	on	a	computer.	For	e.g.	Flash,	Processing,	Max/MSP).	The	board	is	clocked	by	a	16	MHz	ceramic	resonator	and	has	a	USB	connection	for	power	and	communication.	You	can	easily	add	micro
SD/SD	card	storage	for	bigger	tasks.	Features	of	the	Arduino	Uno	Board:	It	is	an	easy	USB	interface.	This	allows	interface	with	USB	as	this	is	like	a	serial	device.	The	chip	on	the	board	plugs	straight	into	your	USB	port	and	supports	on	your	computer	as	a	virtual	serial	port.	The	benefit	of	this	setup	is	that	serial	communication	is	an	extremely	easy
protocol	which	is	time-tested	and	USB	makes	connection	with	modern	computers	and	makes	it	comfortable.	It	is	easy-to-find	the	microcontroller	brain	which	is	the	ATmega328	chip.	It	has	more	number	of	hardware	features	like	timers,	external	and	internal	interrupts,	PWM	pins	and	multiple	sleep	modes.	It	is	an	open	source	design	and	there	is	an
advantage	of	being	open	source	is	that	it	has	a	large	community	of	people	using	and	troubleshooting	it.	This	makes	it	easy	to	help	in	debugging	projects.	It	is	a	16	MHz	clock	which	is	fast	enough	for	most	applications	and	does	not	speeds	up	the	microcontroller.	It	is	very	convenient	to	manage	power	inside	it	and	it	had	a	feature	of	built-in	voltage
regulation.	This	can	also	be	powered	directly	off	a	USB	port	without	any	external	power.	You	can	connect	an	external	power	source	of	upto	12v	and	this	regulates	it	to	both	5v	and	3.3v.	13	digital	pins	and	6	analog	pins.	This	sort	of	pins	allows	you	to	connect	hardware	to	your	Arduino	Uno	board	externally.	These	pins	are	used	as	a	key	for	extending
the	computing	capability	of	the	Arduino	Uno	into	the	real	world.	Simply	plug	your	electronic	devices	and	sensors	into	the	sockets	that	correspond	to	each	of	these	pins	and	you	are	good	to	go.	This	has	an	ICSP	connector	for	bypassing	the	USB	port	and	interfacing	the	Arduino	directly	as	a	serial	device.	This	port	is	necessary	to	re-bootload	your	chip	if
it	corrupts	and	can	no	longer	used	to	your	computer.	It	has	a	32	KB	of	flash	memory	for	storing	your	code.	An	on-board	LED	is	attached	to	digital	pin	13	to	make	fast	the	debugging	of	code	and	to	make	the	debug	process	easy.	Finally,	it	has	a	button	to	reset	the	program	on	the	chip.	Arduino	was	created	in	the	year	2005	by	two	Italian	engineers	David
Cuartielles	and	Massimo	Banzi	with	the	goal	of	keeping	in	mind	about	students	to	make	them	learn	how	to	program	the	Arduino	uno	microcontroller	and	improve	their	skills	about	electronics	and	use	it	in	the	real	world.	Arduino	uno	microcontroller	can	sense	the	environment	by	receiving	input	from	a	variety	of	sensors	and	can	affect	its	surroundings
by	controlling	lights,	motors,	and	other	actuators.	The	microcontroller	is	programmed	using	the	Arduino	programming	language	(based	on	Wiring)	and	the	Arduino	development	environment	(based	on	Processing).	ATmega168/328-Arduino	Pin	Mapping:	ATmega168-328Arduino	Pin	Mapping	Programming:	The	Arduino	integrated	development
environment	(IDE)	is	a	cross-platform	application	written	in	Java,	and	is	derived	from	the	IDE	for	the	Processing	programming	language	and	the	Wiring	projects	The	Arduino	Uno	board	can	be	programmed	with	the	Arduino	software.	Select	“Arduino	Uno	from	the	Tools	>	Board	menu	(according	to	the	microcontroller	on	your	board).	The	ATmega328
on	the	Arduino	Uno	comes	preburned	with	a	bootloader	that	allows	you	to	upload	new	code	to	it	without	the	use	of	an	external	hardware	programmer.	It	communicates	using	the	original	STK500	protocol.	You	can	also	bypass	the	bootloader	and	program	the	microcontroller	through	the	ICSP	(In-Circuit	Serial	Programming)	header.	The	ATmega16U2
(or	8U2	in	the	rev1	and	rev2	boards)	firmware	source	code	is	available	.	Pin	Diagram	of	Arduino	Uno	The	ATmega16U2/8U2	is	loaded	with	a	DFU	bootloader,	which	can	be	activated	by:	On	Rev1	boards:	connecting	the	solder	jumper	on	the	back	of	the	board	(near	the	map	of	Italy)	and	then	resetting	the	8U2.	On	Rev2	or	later	boards:	there	is	a	resistor
that	pulling	the	8U2/16U2	HWB	line	to	ground,	making	it	easier	to	put	into	DFU	mode.	Please	refer	to	this	link	to	know	more	about	Arduino	Projects	for	Engineering	Students	You	can	then	use	Atmel’s	FLIP	software	(Windows)	or	the	DFU	programmer	(Mac	OS	X	and	Linux)	to	load	a	new	firmware.	Or	you	can	use	the	ISP	header	with	an	external
programmer	(overwriting	the	DFU	bootloader).	Arduino	Uno	Starter	Kit	Microcontroller																																								ATmega328	Operating	Voltage																																				5V	Input	Voltage	(recommended)										7-12V	Input	Voltage	(limits)																													6-20V	Digital	I/O	Pins																																										14	(of	which	6	provide	PWM	output)	Analog	Input
Pins																																				6	DC	Current	per	I/O	Pin																										40	Ma	DC	Current	for	3.3V	Pin																								50	Ma	Flash	Memory																																											32	KB	(ATmega328)	of	which	0.5	KB	used	by	bootloader	SRAM																																																												2	KB	(ATmega328)	EEPROM																																																							1	KB	(ATmega328)	Clock
Speed																																																16	MHz	Home	/	Hardware	/	UNO	R3	Arduino	UNO	is	a	microcontroller	board	based	on	the	ATmega328P.	It	has	14	digital	input/output	pins	(of	which	6	can	be	used	as	PWM	outputs),	6	analog	inputs,	a	16	MHz	ceramic	resonator,	a	USB	connection,	a	power	jack,	an	ICSP	header	and	a	reset	button.	It	contains
everything	needed	to	support	the	microcontroller;	simply	connect	it	to	a	computer	with	a	USB	cable	or	power	it	with	a	AC-to-DC	adapter	or	battery	to	get	started.	You	can	tinker	with	your	UNO	without	worrying	too	much	about	doing	something	wrong,	worst	case	scenario	you	can	replace	the	chip	for	a	few	dollars	and	start	over	again.The
ATmega328P	can	easily	be	replaced,	as	it	is	not	soldered	to	the	board.The	ATmega328P	also	features	1kb	of	EEPROM,	a	memory	which	is	not	erased	when	powered	off.The	Arduino	UNO	features	a	barrel	plug	connector,	that	works	great	with	a	standard	9V	battery.	Home	/	Hardware	/	UNO	R3	Arduino	UNO	is	a	microcontroller	board	based	on	the
ATmega328P.	It	has	14	digital	input/output	pins	(of	which	6	can	be	used	as	PWM	outputs),	6	analog	inputs,	a	16	MHz	ceramic	resonator,	a	USB	connection,	a	power	jack,	an	ICSP	header	and	a	reset	button.	It	contains	everything	needed	to	support	the	microcontroller;	simply	connect	it	to	a	computer	with	a	USB	cable	or	power	it	with	a	AC-to-DC
adapter	or	battery	to	get	started.	You	can	tinker	with	your	UNO	without	worrying	too	much	about	doing	something	wrong,	worst	case	scenario	you	can	replace	the	chip	for	a	few	dollars	and	start	over	again.The	ATmega328P	can	easily	be	replaced,	as	it	is	not	soldered	to	the	board.The	ATmega328P	also	features	1kb	of	EEPROM,	a	memory	which	is
not	erased	when	powered	off.The	Arduino	UNO	features	a	barrel	plug	connector,	that	works	great	with	a	standard	9V	battery.	Arduino	is	an	incredibly	important	part	of	modern-day	electronics.	The	ease	with	which	these	Arduino	boards	can	be	programmed	makes	them	the	best	choice	especially	when	it	comes	to	integrating	them	with	large-scale
projects.	In	this	article,	we	will	get	an	overview	of	the	basic	components	that	make	up	an	Arduino	board.	This	will	include	talking	about	the	brain	of	the	Arduino	i.e.	the	microcontroller,	the	pins,	and	the	power	supplies.	What	is	an	Arduino	Board?Here	is	an	overview	of	the	whole	Arduino	board.	Anybody	who	has	worked	on	Arduino	will	know	that	is	a
small	board	consisting	of	multiple	components	like	ICs,	and	USB	which	are	interconnected	to	form	a	whole	connection.	Here	is	a	list	of	all	the	components	Arduino	Board	Analog	Reference	pinDigital	Ground	Digital	Pins	2-13	Digital	Pins	0-1/Serial	In/Out	-	TX/RXReset	Button	-	S1	In-circuit	Serial	Programmer	ICSP	pin	Analog	In	Pins	0-5	Power	and
Ground	PinsExternal	Power	Supply	In	(9-12VDC)	-	X1Toggles	External	Power	and	USB	Power-	SV1	USB	(universal	serial	bus)Crystal	Oscillator	MicrocontrollersThe	microcontroller	used	on	the	Arduino	board	is	essentially	used	for	controlling	all	major	operations.	The	microcontroller	is	used	to	coordinate	the	input	taken	and	execute	the	code	written	in
a	high-level	language.	This	code	is	then	implemented	and	relevant	output	is	generated.	The	choice	of	microcontroller	varies	on	the	requirements	of	the	project.	The	microcontroller	used	in	the	Arduino	shown	above	is	ATmega328P	manufactured	by	ATMEL	Company	and	it	is	the	most	common	choice.	Here	are	some	features	of	this	microcontroller.
ATmega328P	has	14	Digital	I/O	Pins.	Out	of	the	14	pins,	6	provide	PWM(pulse	width	modulation)	output.ATmega328P	can	have	6	(DIP)	or	8	(SMD)	Analog	Input	Pins.The	DC	Current	which	is	supplied	to	each	I/O	Pin	is	around	40	mA.ATmega328P	has	a	flash	memory	of	32	KB.ATmega328P	has	a	SRAM(Static	Random-Access	Memory)	of	2
KB.ATmega328P	has	EEPROM(Electrically	Erasable	Programmable	Read-Only	Memory)	of	1	KB.	Communication	Interface	To	function	optimally,	the	Arduino	needs	to	communicate	with	external	devices	like	computers,	sensors,	and	LEDs.	By	adding	a	communication	interface,	we	can	ensure	that	Arduino	can	receive	and	transfer	data	to	external
devices	and	therefore	generate	the	required	output.	Let's	understand	the	components	that	make	up	the	Communication	Interface	of	Arduino.	Serial	Communication	(UART):	The	UART	is	a	protocol	used	by	Arduino	for	serial	communication	with	other	devices.	UART	stands	for	Universal	Asynchronous	Receiver/Transmitter	and	is	used	for	bit	data
transfer.	The	built-in	hardware	in	Arduino	aids	it	in	this	communication	with	other	sensors,	actuators,	Rasperry	pies,	and	other	boards.Inter-Integrated	Circuit	(I2C):	This	is	another	communication	protocol	that	comes	into	the	picture	when	we	want	multiple	connections	but	with	minimal	wiring.	The	way	it	allows	communication	between	multiple
channels	is	using	two	wires	known	as	the	SDA	-	Serial	Data	Line	and	SCL	-	Serial	Clock	Line.	Arduino	is	designed	with	pins	that	help	the	Arduino	to	connect	with	sensors	and	displays	without	any	inconvenience.Serial	Peripheral	Interface	(SPI):	The	last	serial	communication	protocol	that	is	used	when	we	need	high	speed	for	data	transfer.	The	multiple
lines	used	in	this	protocol	help	to	connect	the	microcontroller	to	other	devices.	Unlike	I2C,	it	uses	different	wires	to	coordinate	different	tasks	like	communication,	clock	controls,	etc.	This	protocol	is	suitable	for	connecting	Arduino	with	SD	cards,	display	modules,	and	digital-to-analog	converters	(DACs).	Digital	PinsIn	general,	digital	pins	are	used	for
general	purposes	like	taking	input	or	generating	output.	The	commands	that	are	used	for	setting	the	modes	of	the	pins	are	pinMode(),	digitalRead(),	and	digitalWrite()	commands.	digitalWrite()	is	used	to	turn	the	resistors	in	each	pin	ON	or	OFF	which	will	assign	a	HIGH	or	LOW	value	to	the	pins.	The	maximum	current	that	can	flow	in	each	pin	is	40
mA.	Here	are	some	digital	pins.	Serial:	These	pins	are	categorized	into	two	types	namely	receive	(RX)	and	transmit	(TX)	serial	data.	On	the	Arduino	Diecimila,	the	two	pins	are	usually	numbered	'0'	and	'1'	when	they	perform	the	task	of	communication.	They	are	also	present	at	pin	12	where	TX	flashes	the	LED	while	data	is	sent	and	RX	flashes	when
data	is	being	received.	Sometimes,	they	are	used	with	an	external	TTL	serial	module	(e.g.	the	Mini-USB	Adapter).	External	Interrupts:	As	the	name	suggests,	external	interrupts	are	used	to	trigger	an	interrupt	when	required.	This	interruption	can	be	due	to	a	rising	or	falling	edge,	or	a	change	in	value.	Once	an	interrupt	is	called,	the	Arduino	will	come
to	a	halt	and	begin	working	only	when	told.	These	pins	are	PIN	'2'	and	'3'	which	are	controlled	using	the	attachInterrupt()	function.PWM:	PWM	stands	for	pulse	width	modulation.	The	pin	numbers	3,	5,	6,	9,	10,	and	11	are	PWM	pins.	The	analogWrite()	function	is	used	for	generating	an	8-bit	output.	So	when	a	large	output	is	to	be	received	or
transmitted,	the	8-bit	output	is	generated.	On	certain	boards	like	ATmega8,	these	pins	are	limited	and	present	at	9,	10,	and	11.SPI(serial	peripheral	interface):	This	is	a	synchronous	serial	data	protocol	generally	used	by	microcontrollers.	This	is	present	at	pin	number	10	(SS),	11	(MOSI),	12	(MISO),	and	13	(SCK)	which	are	used	by	microcontrollers	for
communicating	with	different	devices.	The	relationship	can	be	understood	as	the	output	device	acting	as	a	slave	to	the	master	of	the	SPI	bus.LED:	Present	at	pin	number	13	in	some	Arduino,	LED	is	often	used	for	testing	purposes.	The	LED	glows	when	the	pin	is	HIGH,	and	turns	off	when	the	pin	is	LOW.	Sometimes	it	is	also	possible	to	connect	some
external	LEDS	by	using	breadboard	and	jumper	wires.	Analog	PinsIn	general,	the	analog	pins	are	used	for	general	purposes	like	supporting	10-bit	analog-to-digital	conversion	(ADC)	which	is	performed	using	analog	the	Read()	function.	These	analog	inputs	can	also	be	used	as	digital	pins:	analog	input	0	as	digital	pin	14	through	analog	input	5	as
digital	pin	19.	Analog	pins	are	particularly	helpful	since	they	can	store	0-255	bits	which	is	not	possible	using	digital	pins.	This	feature	is	not	available	on	every	Arduino	board.	I2C(Inter-Integrated	Circuit):	These	pins	are	present	at	numbers	4	(SDA)	and	5	(SCL)	and	are	used	to	perform	I2C	(TWI)	communication.	Note	that	we	need	to	import	the	Wire
library	to	use	this	protocol.	Power	PinsThe	power	pins	are	used	to	supply	the	power	needed	for	operating	the	Arduino.	In	case	some	external	source	like	a	jack	is	being	used	to	drive	the	power	then	it	can	be	connected	to	this	PIN.	The	supply	of	power	that	each	board	can	take	varies	from	one	design	to	another	and	it	is	necessary	to	know	this	range	for
the	board	that	you	are	using.	Some	Arduinos	don't	have	the	VIN	pin	since	they	only	accept	a	regulated	input,	one	such	example	is	lililyPad	5V(Power	Supply):	This	is	the	voltage	that	is	used	for	driving	components	like	the	microcontroller	on	the	board.	This	power	can	only	come	either	from	VIN	or	a	source	that	can	provide	a	regulated	voltage	of
around	5V.	Any	voltage	less	than	this	will	not	turn	the	Arduino	on.GND:	This	is	known	as	the	Ground	pin	and	is	used	to	set	a	reference	level	as	the	ground.	This	is	automatically	considered	to	be	at	the	potential	0V.	Other	PinsAREF:	The	analog	reference	pin	is	often	used	to	set	an	upper	limit	to	the	voltage	for	analog	pins.	This	is	set	using	the
analogReference()	function.Reset:	This	pin	is	used	to	reset	the	state	of	the	microcontroller	by	setting	all	values	to	their	default	values.	Once	all	the	actions	have	been	performed	or	some	wrong	program	is	executed	then	you	might	want	to	reset	the	Arduino	so	you	can	use	this	pin	for	that.	Crystal	OscillatorThe	crystal	oscillator	is	a	device	on	Arduino
that	deals	with	issues	involving	time.	The	Arduino	calculates	time	using	this	oscillator	only.	If	you	observe,	you	will	see	the	number	'16.000H9H'	printed	on	top	of	the	Arduino	crystal.	This	indicates	that	the	Arduino	operates	at	a	frequency	of	16,000,000	Hertz	pf.	Crystal	oscillators	are	very	precise	and	accurate	devices.	For	example,	a	crystal	oscillator
is	also	present	on	he	Arduino	to	provide	clock	pulses	to	the	microcontroller	Atmega	328	and	help	it	control	all	commands	and	order	of	execution.	Applications	of	Arduino	Arduino	finds	its	applications	in	various	fields	due	to	their	ability	to	perform	different	things.	Let	us	see	some	of	its	applications:	Arduinos	are	used	in	3D	printing	where	they	perform
the	task	of	selecting	how	the	printing	will	be	performed.Arduinos	are	used	for	creating	basic	designs	by	makers,	designers,	hackers,	and	creators	across	the	globe	to	create	some	great	projects.	Some	of	the	projects	are	Laser	Turret	Midi	Controller,	Retro	Gaming	With	an	OLED	Display,	and	Traffic	Light	Controller.Arduinos	are	used	by	college
students	to	understand	programmable	electronics	and	to	explore	their	interest	in	programming.Arduinos	are	used	in	the	field	of	robotics	for	programming	robots	and	adding	basic	features	like	sensing	and	responding	to	environmental	conditions.Arduino	is	used	in	IoT(Internet	of	Things)	since	it	can	collect	information	using	sensors.	The	collected	data
is	then	processed	and	transmitted	for	developing	various	smart	devices.Conclusion	We	have	seen	how	Arduino	is	made	of	various	components	that	control	the	entire	working	of	Arduino.	These	components	are	connected	to	coordinate	all	the	tasks	and	ensure	the	Arduino	can	work	as	required.	Apart	from	the	microcontroller,	which	is	the	Braun	of	the
Arduino,	we	studied	various	components	like	the	pins	and	the	oscillators.	It	is	important	to	know	the	different	components	that	make	the	hardware	and	software	parts	work	together.	Readers	are	advised	to	refer	to	the	frequently	asked	questions	in	case	of	any	doubts.

